SOIL SAMPLING AND ANALYSIS REPORT

CALTECH SUBMILLIMETER OBSERVATORY DECOMMISSIONING PROJECT MAUNA KEA SUMMIT MAUNA KEA, BIG ISLAND, HAWAII

Prepared for: CALIFORNIA INSTITUTE OF TECHNOLOGY 1200 E. California Boulevard Pasadena, California 91125

Prepared by:

LEHUA ENVIRONMENTAL INC. P.O. Box 1018 Kamuela, Hawaii 96743

Date: June 28, 2024

TABLE OF CONTENTS

1.0	CERTIFICATIONS AND LIMITATIONS	L
2.0	INTRODUCTION	2
3.0	SITE DESCRIPTION	3
4.0	PURPOSE AND COPCS	1
5.0	DECISION UNITS	5
6.0	SOIL SAMPLING ACTIVITIES	5
7.0	RESULTS)
8.0	CONCLUSIONS AND RECOMMENDATIONS)
9.0	REFERENCES	l

TABLES

TABLE 1	SOIL SAMPLING RESULTS	APPENDIX I
TABLE A	SUMMARY OF DECISION UNITS	PAGE 5

APPENDICES

APPENDIX I:	TABLES OF RESULTS
APPENDIX II:	FIGURE 1: DECISION UNIT (DU) BOUNDARIES MAP
APPENDIX III:	SOIL LABORATORY ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY FORMS

LIST OF ACRONYMS

<	less than
%	percent
%R	percent recovery
bgs	below ground surface
BTEX	Benzene, toluene, ethylbenzene, xylenes
Caltech	California Institute of Technology
COPC	chemicals of potential concern
CSO	Caltech Submillimeter Observatory
HDOH	State of Hawai'i Department of Health
DU	decision unit
DQO	data quality objective
EAL	Environmental Action Level
EPA	Environmental Protection Agency
ft	feet
g	gram
in	inch
ISM	incremental sampling method
LEI	Lehua Environmental Inc.
mg/kg	milligrams per kilogram
NA	not applicable
ND	not detected
PAHs	Polynuclear Aromatic Hydrocarbons
PCBs	Polychlorinated biphenyls
RCRA	Resource Conservation Recovery Act
SAP	Sampling and Analysis Plan
TGM	Technical Guidance Manual
TCLP	Toxicity Characteristic Leaching Procedure
TPH-GRO	Total petroleum hydrocarbons-gasoline range organics
TPH-DRO	Total petroleum hydrocarbons-diesel range organics
TPH-RRO	Total petroleum hydrocarbons-residual range organics
VOCs	Volatile Organic Compounds

1.0 CERTIFICATIONS AND LIMITATIONS

Lehua Environmental Inc. (LEI) has completed this Soil Sampling and Analysis Report for the California Institute of Technology (Caltech) Submillimeter Observatory Decommissioning project located on the Mauna Kea Summit of Mauna Kea, Big Island, Hawaii (Subject Site). LEI's findings and recommendations contained herein are based on research, site observations, government regulations and laboratory data, which were gathered at the time and location of the study. Opinions stated in this report do not apply to changes that may have occurred after the services were performed.

LEI has performed specified services for this project with the degree of care, skill and diligence ordinarily exercised by professional consultants performing the same or similar services. No other warranty, guarantee, or representation, expressed or implied, is included or intended; unless otherwise specifically agreed to in writing by both LEI and LEI's Client.

This report is intended for the sole use of LEI's client exclusively for the Subject Site. LEI's client may use and release this report, including making and retaining copies, provided such use is limited to the particular site and project for which this report is provided. However, the services performed may not be appropriate for satisfying the needs of other users. Release of this report to third-parties will be at the sole risk of LEI's Client and/or said user, and LEI shall not be liable for any claims or damages resulting from or connected with such release or any third party's use or reuse of this report.

Prepared By:

Kamalana Kobayashi Project Principle Lehua Environmental Inc.

Date:

June 28, 2024

2.0 INTRODUCTION

The Caltech retained Lehua Environmental Inc. (LEI) to conduct soil sampling per the September 25, 2020, Soil Sampling and Analysis Plan (SAP) Draft completed by Enpro Environmental for the Caltech Submillimeter Observatory (CSO) Decommissioning Project at the Mauna Kea Summit, Mauna Kea, Hawaii. The decommissioning of facilities within the CSO sublease include the observatory, pump house, single-story outbuilding and cesspool. The decommissioning project included the removal of asphalt paving, slab-on-grade and below-grade foundations of the observatory building.

Specifically, LEI completed the following tasks:

- Performed site reconnaissance at the Subject Site;
- Reviewed the Enpro Environmental September 25, 2020, *Sampling and Analysis Plan Draft for the Caltech Submillimeter Observatory Decommissioning Project* (Enpro, 2020) located at the Mauna Kea Summit, Mauna Kea, Hawaii
- Identified a total of five (5) decision units within the Subject Site and collected a total of seven (7) incremental sampling method (ISM) soil samples from the 5 decision units of the Subject Site which included triplicate samples per SAP and Hawaii Department of Health (HDOH) Hazard Evaluation and Emergency Response (HEER) Technical Guidance Manual (TGM) recommendations.
- Submitted the seven (7) ISM soil samples to OnSite Environmental Inc. located in Redmond, Washington for the SAP required laboratory analysis.
- Prepared this report documenting the field activities and the results of the investigation including analytical results, photographs and recommendations.

3.0 SITE DESCRIPTION

The Subject Site is located near the summit of Mauna Kea in the north central portion of the Island of Hawaii. The site is a 0.75-acre portion of Tax Map Key (TMK) (3)4-4-015:009 and is zoned as Conservation Land.

The SAP defines below decision units at the Subject Site for soil sample collection (Figure 1, Appendix II):

- CSO Footprint, approximately 6,000 square feet (sf)
- An 850-gallon cesspool, approximately 60 sf
- Additionally, an area of concern included the asphalt paved driveway/parking lot which had a hydraulic fluid leak during decommissioning activities, approximately 300 sf

4.0 PURPOSE AND CHEMICALS OF POTENTIAL CONCERN (COPCs)

The purpose of the SAP was to assess whether the following chemicals of potential concern (COPCs) exceed the HDOH HEER office's most restrictive action levels: Tier I Environmental Action Levels (EALs) for unrestricted land use at the observatory building footprint, cesspool, additional areas of concern and/or have migrated beyond the building footprint and cesspool. All laboratory analysis was conducted per the SAP requirements.

Soils present beneath CSO Slab

- Total Petroleum Hydrocarbons (TPH) as diesel range organics (DRO) and residual range organics (RRO)
- Polychlorinated Biphenyls (PCBs)
- Lead

Cesspool walls and base

- Toxicity Characteristic Leaching Procedure (TCLP) cadmium, chromium and lead
- Total cadmium, chromium, silver and lead
- TPH as gasoline range organics (GRO), DRO and RRO
- Benzene, toluene, ethylbenzene, xylenes (BTEX)
- Polynuclear Aromatic Hydrocarbons (PAHs)
- PCBs
- Cyanide
- Volatile Organic Compounds (VOCs)

<u>Additional Area of Concern due to Hydraulic Fluid Leak (below reportable quantity) – Soils</u> present beneath the Asphalt Pavement Driveway/Parking Lot in the Area of the Hydraulic Fluid Leak that occurred during CSO Decommissioning Activities

- TPH as GRO, DRO and RRO
- VOCs
- PAHs
- PCBs
- Resource Conservation Recovery Act (RCRA) 8 Metals (Arsenic, Barium, Cadmium, Chromium, Lead, Silver, Selenium, Mercury)

5.0 DECISION UNITS

Soil sampling was conducted per the SAP requirements of the following decision units (DUs). A description of each DU and sampling locations are presented in the table below:

SAMPLE ID/ DU	Location/Est. Size	Rational	Depth (in. bgs)
CSO DU- 1A-1, 2, 3/ Layer A	Beneath CSO below-grade slab, approx. 110 cubic yards (cy)	Suspect COPC leached through concrete slab	0-6
CSO DU- 1B/ Layer B	Beneath CSO below-grade slab, approx. 110 cubic yards (cy)	Suspect COPC leached through concrete slab	6-12
DU2	Soils removed from the walls of the cesspool, approx. 40 cy	Suspect COPC disposed of in cesspool	Stockpiled soils
DU3	Soils removed from the base of the cesspool, approx. 20 cy	Suspect COPC disposed of in cesspool, no staining observed	Stockpiled soils
DU4	Soils beneath the asphalt pavement, approx. 5 cy	Suspect COPC due to hydraulic fluid leak during CSO decommissioning activities (Leak was below the reportable quantity)	0-6

Table A. Summary of Decision Units

6.0 SOIL SAMPLING ACTIVITIES

LEI collected the surface, shallow subsurface and stockpile Incremental Sampling Method (ISM) soil samples for all soil sampling at the Subject Site per the SAP requirements (Enpro, 2020) and in accordance with the DOH HEER office TGM. A triplicate sample was collected from surface soils beneath the CSO below-grade concrete slab to test field precision in accordance with DOH HEER office TGM, Section 4.2.8.2. Additionally, a photoionization detector (PID) was utilized during all sampling activities to monitor total volatile organic compound (VOC) concentrations in the workspace atmosphere. PID measurements were conducted according to the SAP requirements.

Below are details of the ISM sampling at the Subject Site:

 After removal of the CSO below-grade concrete slab, ISM surface (0"-6" below ground surface [bgs]) and subsurface (6"-12" bgs) soils were collected. The decision unit (DU) sample identification numbers for the surface soils are: CSO DU-1A-1 (primary), CSO DU-1A-2 (duplicate) and CSO DU-1A-3 (Triplicate) and for subsurface soils: CSO DU-1B.

One-hundred (100) increments were collected from each of these decision units by utilizing a stainless-steel sampling spoon per the SAP requirements.

COPCs for the soils collected beneath the CSO concrete below-grade slab included:

- Total Petroleum Hydrocarbons (TPH) as diesel range organics (DRO) and residual range organics (RRO)
- Polychlorinated biphenyls (PCBs)
- o Lead
- Cesspool soil samples were collected from stockpiled soils excavated from the walls and base of the cesspool. The decision unit sample identification number for the stockpiles originating from the cesspool walls is: CSO DU2 and for the cesspool base: CSO DU3.

Seventy-five (75) increments were collected from each of these decision units by utilizing a stainless-steel sampling spoon and Terra-core samplers.

COPCs for the soils collected beneath the CSO concrete below-grade slab included:

- Toxicity Characteristic Leaching Procedure (TCLP) cadmium, chromium, and lead
- Total cadmium, chromium, silver and lead
- TPH as gasoline range organics (GRO), DRO, RRO
- Benzene, toluene, ethylbenzene, xylenes (BTEX)
- Polynuclear aromatic hydrocarbons (PAHs)
- o PCBs
- o Cyanide
- Halogenated volatile organic compounds (HVOCs)

• After removal of the asphalt paved driveway/parking lot, ISM surface (0"-6" bgs) soil samples were collected from the area of the hydraulic fluid leak which occurred during decommissioning activities. The hydraulic fluid leak occurred due to a broken hydraulic line on the excavator used during the decommissioning activities. The hydraulic fluid leak was promptly cleaned and containing by the contractor.

The decision unit sample identification number for the surface soils is: CSO DU-4. Onehundred (100) increments were collected from the decision unit by utilizing a stainlesssteel sampling spoon and Terra-core samplers.

COPCs for the soils collected beneath the asphalt paved driveway/parking lot in the area of the hydraulic leak during decommissioning activities included:

- Total Resource and Conservation Recovery Act (RCRA) 8 metals
- TPH as GRO, DRO, RRO
- o BTEX
- o PAHs
- o PCBs
- o HVOCs

ISM soil sampling was chosen for the Subject Site so that reproducible data, representative of average background concentrations, can be obtained for use as reference control data. A total of five (5) DUs were identified at the Subject Site. DU boundaries were based on the SAP (Enpro, 2020) developed for the CSO decommissioning project.

The location of each increment was based on a systematic random grid that was developed during the site visit. The grid was drawn with a random starting point for even distribution across the sampling area. The systematic random sampling design provided coverage of the DU along a horizontal plane, without the gaps associated with purely random designs.

For non-volatile soil sample analysis, each increment was taken and then placed into a doublebagged Ziploc[®] bag. This process was repeated until all SAP required increments were collected for each decision unit.

For volatile soil sample analysis, each increment was collected with a disposable Terra-core sampler and placed into an amber glass jar containing 30 mL of a methanol preservative, for a 1:1 ratio.

Soil samples were placed in a field cooler with ice packs and sent to the analytical laboratory in Redmond, Washington.

Personnel PPE and Equipment Decontamination

All field personnel wore clean disposal nitril gloves during sample collection to avoid crosscontamination between DUs. Gloves were changed between DUs. All sampling equipment used to collect ISM soil samples were decontaminated prior to use between DUs. The decontamination procedure for sampling equipment is as follows:

- 1. Clean with distilled water and brush, if necessary, to remove particulate matter and surface films.
- 2. Rinse thoroughly with distilled water.
- 3. Rinse thoroughly with $Liquinox^{TM}$.
- 4. Rinse with distilled water.

Data Quality Control and Review

In accordance with the SAP requirements and DOH policy, LEI implemented a 10% QC program, meaning that a duplicate and triplicate sample were taken for a minimum of 10% of primary samples, and submitted for chemical analysis. The duplicate and triplicate samples were taken from locations directly adjacent to and at approximately the same depth of the primary sample. The duplicate and triplicate samples were collected, handled, and analyzed using the same methods as the primary samples.

QA of samples collected in the field was ensured through the use of trained sampling personnel, documented and standardized procedures, and collection of field QC samples.

Field QC samples were analyzed for the same parameters as the primary samples. Laboratory QC samples and surrogates were analyzed according to the laboratory's SOPs.

Precision is defined as the agreement between a set of replicate measurements without assumption and knowledge of the true value. Precision was evaluated using a sample group consisting of primary, duplicate, and triplicate samples for ISM soil samples. QC samples were collected at a rate of 10% of project samples.

The mean and relative standard deviations were used to evaluate the precision of the QC sample groups. If the relative standard deviation of the sample group is less than 35%, then the reported concentrations are considered precise. For the field QC samples collected from the ISM sampling all analytes had a standard deviation less than 35% for every analyte (Table 1 and 2, Appendix I). Additionally, laboratory QC tests were all within their acceptable ranges which points to the accuracy of the reported concentrations. Therefore, the results of all analytes are considered precise.

7.0 RESULTS

Soils present beneath CSO Slab

COPCs for the surface and subsurface soils beneath the CSO concrete slab included TPH-DRO, -RRO, PCBs and lead. All COPCs for the surface and subsurface soils beneath the CSO concrete slab were not detected above the HDOH Tier 1 EALs for unrestricted land use.

Cesspool walls and base

COPCs for the stockpiled soils originated from the cesspool walls and base included TCLPcadmium, -chromium, -lead, total-cadmium, -chromium, -silver, -lead, TPH-GRO, -DRO, -RRO, BTEX, PAHs, PCBs, Cyanide and VOCs. All COPCs for the stockpiled soils of the cesspool walls and base were not detected above the HDOH Tier 1 EALs for unrestricted land use.

<u>Additional Area of Concern due to Hydraulic Fluid Leak (below reportable quantity) – Soils</u> present beneath the Asphalt Pavement Driveway/Parking Lot in the Area of the Hydraulic Fluid Leak that occurred during CSO Decommissioning Activities

COPCs for the surface soils beneath the asphalt pavement driveway/parking lot in the area of the hydraulic fluid leak that occurred during CSO decommissioning activities included TPH-GRO, - DRO, -RRO, VOCs, PAHs, PCBs and RCRA 8 metals. Except as listed below in bold text, all COPCs were not detected above the HDOH Tier 1 EALs for unrestricted land use.

TPH-RRO in the sampled soils beneath the asphalt pavement driveway/parking lot in the area of the hydraulic leak that occurred during CSO decommissioning activities exceeded the HDOH Tier 1 EAL for unrestricted land use.

Tables 1 and 2 located in Appendix I summarizes the soil sampling results for the Subject Site. Figure 1 located in Appendix II identifies the decision unit locations at the Subject Site. Laboratory results are included in Appendix III.

8.0 CONCLUSIONS AND RECOMMENDATIONS

LEI recommends the following for the identified TPH-RRO-impacted soils at the Subject Site:

- The owner or operator of the facility must immediately notify the Hawai'i State Emergency Response Commission (HSERC) (through the HEER Office) and the appropriate Local Emergency Planning Committee (LEPC) if there is a release into the environment of a hazardous substance that is equal to or exceeds the minimum reportable quantity in any 24-hour period as set forth in the regulation. Call (808) 586-4249 and following up with a written Release Notification. Additional details regarding requirements for notification he found can at: https://health.hawaii.gov/heer/reporting/how-to-report-a-release-spill/. Notification to the HEER Office should be made immediately upon confirmation of contaminated soil at concentrations that exceed Tier 1 and/or Tier 2 Environmental Action Levels and therefore pose a potential hazard to human health and/or the environment.
- Use of good general hygiene practices for tenants, public, employees and workers to avoid soil exposure.
- Limit exposure to the contaminated soils to properly trained personnel by fencing or blocking off all bare soil or patchy grass areas so that children, site workers and the general public will not be able to access bare soil or patchy grass areas.
- Prior to construction activities that disturb the TPH-RRO-impacted soils, prepare and submit for approval to the Hawaii DOH Hazard Evaluation and Emergency Response (HEER) office a Construction-Environmental Hazard Management Plan (C-EHMP) which outlines the proper handling and management of soil and/or groundwater, sampling and analysis protocol for soil, the planned re-use/disposal locations for excavated soil, health and safety measures to be taken to protect workers, environment and the general public. The C-EHMP should be approved by the Hawaii DOH HEER office prior to the start of TPH-RRO-impacted soils disturbance at the Subject Site.

If applicable, develop a Removal Action Report (RAR) presenting the results of the removal action, based on the Removal Action Work Plan (RAWP). The RAWP is usually completed prior to initiating a removal action; however, this may not be possible in the case of emergency response. The RAR should include background information, remedial action details and description of confirmation testing to demonstrate effectiveness of the remedial action in reducing contamination levels below Tier 1 environmental action levels.

• Assume all untested soils at the Subject Site are TPH-RRO-contaminated until further testing determines otherwise.

9.0 REFERENCES

- Enpro Environmental, Sampling and Analysis Plan Draft, Caltech Submillimeter Observatory Decommissioning Project, Mauna Kea Summit, Mauna Kea, Hawaii. September 25, 2020.
- Pitard, Francis F., 1993. Pierre Gy's Sampling Theory and Sampling Practice: Heterogeneity, Sampling Correctness, and Statistical Process Control. 2nd Ed. Boca Raton, FL: CRC Press.
- Department of Health, Hazard Evaluation and Emergency Response (HEER) website, <u>http://www.hawaiidoh.org/tgm.aspx</u>.
- State of Hawaii, Department of Health. Update to Soil Action Levels for Inorganic Arsenic and Recommended Soil Management Practices (updates default, background arsenic soil action level presented in 2010 guidance to 24 mg/kg; arsenic exposure units in Section 3.0 table corrected to µg/day September 2012), November 2011 (updated September 2012).
- State of Hawaii, Department of Health, 2009a. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. Office of Hazard Evaluation and Emergency Response. March.
- State of Hawaii, Department of Health, 2009b. Technical Guidance Manual for the Implementation of the Hawai'i State Contingency Plan. June.
- State of Hawaii, Department of Health, 2011. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater Honolulu. August.
- State of Hawaii, Department of Health, 2019. Historic Sugarcane Lands Map Viewer. Retrieved from http://www.health.hawaii.gov/epa/egis/sugarcane/.

TABLES OF RESULTSTABLE 1. SOIL SAMPLING RESULTS FROM MAY 31, 2024 SAMPLINGTABLE 2. SOIL SAMPLING RESULTS FROM JUNE 11, 2024 SAMPLING

			Descriptive Sample ID		CSO DU2			CSO DU3	
			Sample Description	(Cesspool Walls		Cesspool Base		
Analyte	Laboratory Analytical Method	DOH EAL Unrestricted Land Use (mg/kg)	DOH EAL Commercial/ Industrial Land Use (mg/kg)	Result (mg/kg)	Practical Quantitation Limit (PQL) (mg/kg)	Pass/Fail	Result (mg/kg)	Practical Quantitation Limit (PQL) (mg/kg)	Pass/Fail
RCRA 8 Metals - Total			1					1	
Cadmium (Cd)	EPA 6010D	14	72	ND	0.54	Pass	ND	0.56	Pass
Chromium (Cr)	EPA 6010D	1100	1100	5.8	0.54	Pass	5.2	0.56	Pass
Lead (Pb)	EPA 6010D	200	800	ND	5.4	Pass	ND	5.6	Pass
Silver (Ag)	EPA 6010D	78	1000	ND	1.1	Pass	ND	1.1	Pass
RCRA 8 Metals - TCLP	-							1	
Cadmium (Cd)	EPA 1311/6010D	EPA Li	mit - 1.0 mg/L	ND	0.02	Pass	ND	0.02	Pass
Chromium (Cr)	EPA 1311/6010D	EPA Li	mit - 5.0 mg/L	ND	0.02	Pass	ND	0.02	Pass
Lead (Pb)	EPA 1311/6010D		mit - 5.0 mg/L	ND	0.2	Pass	ND	0.2	Pass
	EPA 1311/6010D		mit - 5.0 mg/L	ND	0.04	Pass	ND	0.04	Pass
Silver (Ag)		EPA LI	mit - 5.0 mg/L	ND	0.04	Pass	ND	0.04	Pass
Volatile Organic Compo VOCs (See laboratory	unds (VOCs)								
results for details)	EPA 8260D/SIM	Various	Various	ND	Various	Pass	ND	Various	Pass
Polychlorinated Bipheny	vls (PCBs)								
A1016	EPA 8082A	1.2	8.6	ND	0.054	Pass	ND	0.056	Pass
A1221	EPA 8082A	1.2	8.6	ND	0.054	Pass	ND	0.056	Pass
A1232	EPA 8082A	1.2	8.6	ND	0.054	Pass	ND	0.056	Pass
A1242	EPA 8082A	1.2	8.6	ND	0.054	Pass	ND	0.056	Pass
A1248	EPA 8082A	1.2	8.6	ND	0.054	Pass	ND	0.056	Pass
A1254	EPA 8082A	1.2	8.6	ND	0.054	Pass	ND	0.056	Pass
A1260	EPA 8082A	1.2	8.6	ND	0.054	Pass	ND	0.056	Pass
Total Petroleum Hydroc									
TPH-Diesel	EPA 8015M	220	680	ND	27	Pass	ND	28	Pass
TPH-Oil	EPA 8015M	500	1000	ND	43	Pass	150	45	Pass
TPH-Gas	EPA 8015M	100	500	ND	9	Pass	ND	14	Pass
Polycyclic Aromatic Hyd									
Naphthalene	EPA 8270E/3550C	4.4	4.4	ND	0.0072	Pass	ND	0.0075	Pass
2-Methylnaphthalene	EPA 8270E/3550C	4.1	4.1	ND	0.0072	Pass	ND	0.0075	Pass
1-Methylnaphthalene	EPA 8270E/3550C	4.2	4.2	ND	0.0072	Pass	ND	0.0075	Pass
Acenaphthylene	EPA 8270E/3550C	100	100	ND	0.0072	Pass	ND	0.0075	Pass
Acenaphthene	EPA 8270E/3550C	120	120	ND	0.0072	Pass	ND	0.0075	Pass
Fluorene	EPA 8270E/3550C	93	93	ND	0.0072	Pass	ND	0.0075	Pass
Phenanthrene	EPA 8270E/3550C	460	500	ND	0.0072	Pass	ND	0.0075	Pass
Anthracene	EPA 8270E/3550C	4.2	4.2	ND	0.0072	Pass	ND	0.0075	Pass
Fluoranthene	EPA 8270E/3550C	120	120	ND	0.0072	Pass	ND	0.0075	Pass
Pyrene	EPA 8270E/3550C	44	44	ND	0.0072	Pass	ND	0.0075	Pass
Benzo(a)anthracene	EPA 8270E/3550C	10	10	ND	0.0072	Pass	ND	0.0075	Pass
Chrysene	EPA 8270E/3550C	30	30	ND	0.0072	Pass	ND	0.0075	Pass
Benzo(b)fluoranthene	EPA 8270E/3550C	11	21	ND	0.0072	Pass	ND	0.0075	Pass
Benzo(k)fluoranthene	EPA 8270E/3550C	39	39	ND	0.0072	Pass	ND	0.0075	Pass
Benzo(a)pyrene	EPA 8270E/3550C	3.6	1.5	ND	0.0072	Pass	ND	0.0075	Pass
Indeno(1,2,3-cd)pyrene	EPA 8270E/3550C	11	31	ND	0.0072	Pass	ND	0.0075	Pass
Dibenzo(a,h)anthracene	EPA 8270E/3550C	1.1	18	ND	0.0072	Pass	ND	0.0075	Pass
Benzo(ghi)perylene	EPA 8270E/3550C	35	35	ND	0.0072	Pass	ND	0.0075	Pass
Other									
Cyanide	SM4500-CN-E2011	4.8	30	ND	0.037	Pass	0.235	0.029	Pass

Notes:

ND = Not detected above the laboratory detection limit

DOH = State of Hawai'i Department of Health

EPA = Environmental Protection Agency

EAL = Environmental Action Level mg/kg = Milligrams per kilogram NA = Not available

Table 2. Soil Sampling Summary for June 11, 2024 Sampling

CSO Decommissioning - CSO Slab and Asphalt Driveway/Parking Area

			Descriptive Sample ID		CSO DU-1A-1			CSO DU-1A-2	
			Sample Description	Under	CSO Slab (0"-6	ó" bss)	Under	CSO Slab (0"-6	" bss)
Analyte	Laboratory Analytical Method	DOH EAL Unrestricted Land Use (mg/kg)	DOH EAL Commercial/ Industrial Land Use (mg/kg)	Result (mg/kg)	Practical Quantitation Limit (PQL) (mg/kg)	Pass/Fail	Result (mg/kg)	Practical Quantitation Limit (PQL) (mg/kg)	Pass/Fail
RCRA 8 Metals - Total	ED4 (010D/2421D	2.4	0.5	27.4	27.1	274	N. 1. 1	274	27.4
Arsenic	EPA 6010D/7471B	24	95	NA	NA	NA	NA	NA	NA
Barium	EPA 6010D/7471B	1000	2500	NA	NA	NA	NA	NA	NA
Cadmium	EPA 6010D/7471B	14	72	NA	NA	NA	NA	NA	NA
Chromium	EPA 6010D/7471B	1100	1100	NA	NA	NA	NA	NA	NA
Lead	EPA 6010D/7471B	200	800	ND	5.2	Pass	ND	5.2	Pass
Silver	EPA 6010D/7471B	78	1000	NA	NA	NA	NA	NA	NA
Selenium	EPA 6010D/7471B	78	1000	NA	NA	NA	NA	NA	NA
Mercury	EPA 6010D/7471B	4.7	61	NA	NA	NA	NA	NA	NA
RCRA Metals - TCLP									
Lead (Pb)	EPA 1311/6010D	FPA Li	mit - 5.0 mg/L	ND	0.2	Pass	ND	0.2	Pass
Volatile Organic Compo			inne 5.0 mg/L	TTD.	0.2	1 455		0.2	1 455
VOCs (See laboratory									
results for details)	EPA 8260D/SIM	Various	Various	NA	NA	NA	NA	NA	NA
Polychlorinated Bipheny	ule (DCDs)		ļ [L				
A1016	EPA 8082A	1.2	8.6	ND	0.052	Dees	ND	0.052	Daga
A1010 A1221	EPA 8082A EPA 8082A		8.6	ND		Pass			Pass
A1221 A1232		1.2	8.6		0.052	Pass	ND ND	0.052 0.052	Pass
	EPA 8082A			ND	0.052	Pass			Pass
A1242	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
A1248	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
A1254	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
A1260	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
Total Petroleum Hydroc			600			-			-
TPH-Diesel	EPA 8015M	220	680	ND	26	Pass	ND	26	Pass
TPH-Oil	EPA 8015M	500	1000	ND	52	Pass	ND	52	Pass
TPH-Gas	EPA 8015M	100	500	NA	NA	NA	NA	NA	NA
Polycyclic Aromatic Hyd			· · · · · ·		T				
Naphthalene	EPA 8270E/3550C	4.4	4.4	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	EPA 8270E/3550C	4.1	4.1	NA	NA	NA	NA	NA	NA
1-Methylnaphthalene	EPA 8270E/3550C	4.2	4.2	NA	NA	NA	NA	NA	NA
Acenaphthylene	EPA 8270E/3550C	100	100	NA	NA	NA	NA	NA	NA
Acenaphthene	EPA 8270E/3550C	120	120	NA	NA	NA	NA	NA	NA
Fluorene	EPA 8270E/3550C	93	93	NA	NA	NA	NA	NA	NA
Phenanthrene	EPA 8270E/3550C	460	500	NA	NA	NA	NA	NA	NA
Anthracene	EPA 8270E/3550C	4.2	4.2	NA	NA	NA	NA	NA	NA
Fluoranthene	EPA 8270E/3550C	120	120	NA	NA	NA	NA	NA	NA
Pyrene	EPA 8270E/3550C	44	44	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	EPA 8270E/3550C	10	10	NA	NA	NA	NA	NA	NA
Chrysene	EPA 8270E/3550C	30	30	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	EPA 8270E/3550C	11	21	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	EPA 8270E/3550C	39	39	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	EPA 8270E/3550C	3.6	1.5	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	EPA 8270E/3550C	11	31	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	EPA 8270E/3550C	1.1	18	NA	NA	NA	NA	NA	NA
Benzo(ghi)perylene	EPA 8270E/3550C	35	35	NA	NA	NA	NA	NA	NA
Other						- **			
Cyanide	SM4500-CN	4.8	30	NA	NA	NA	NA	NA	NA
N /	5111000 011		20		has = halaw as			1.111	1,11

Cyanide Notes:

ND = Not detected above the laboratory detection limit

DOH = State of Hawai'i Department of Health

EPA = Environmental Protection Agency

bss = below soil surface

EAL = Environmental Action Level mg/kg = Milligrams per kilogram NA = Not available

Table 2. Soil Sampling Summary for June 11, 2024 Sampling

CSO Decommissioning - CSO Slab and Asphalt Driveway/Parking Area

			Descriptive Sample ID		CSO DU-1A-3			CSO DU-1B	
			Sample Description	Under	CSO Slab (0"-6	ó" bss)	Under (CSO Slab (6"-12	2" bss)
Analyte	Laboratory Analytical Method	DOH EAL Unrestricted Land Use (mg/kg)	DOH EAL Commercial/ Industrial Land Use (mg/kg)	Result (mg/kg)	Practical Quantitation Limit (PQL) (mg/kg)	Pass/Fail	Result (mg/kg)	Practical Quantitation Limit (PQL) (mg/kg)	Pass/Fail
RCRA 8 Metals - Total	ED4 (010D/2421D	24	0.5	27.4					274
Arsenic	EPA 6010D/7471B	24	95	NA	NA	NA	NA	NA	NA
Barium	EPA 6010D/7471B	1000	2500	NA	NA	NA	NA	NA	NA
Cadmium	EPA 6010D/7471B	14	72	NA	NA	NA	NA	NA	NA
Chromium	EPA 6010D/7471B	1100	1100	NA	NA	NA	NA	NA	NA
Lead	EPA 6010D/7471B	200	800	ND	5.2	Pass	ND	5.2	Pass
Silver	EPA 6010D/7471B	78	1000	NA	NA	NA	NA	NA	NA
Selenium	EPA 6010D/7471B	78	1000	NA	NA	NA	NA	NA	NA
Mercury	EPA 6010D/7471B	4.7	61	NA	NA	NA	NA	NA	NA
RCRA Metals - TCLP									
Lead (Pb)	EDA 1211/(010D	EDAT	mit 50 mc/I	ND	0.2	Derr	ND	0.2	Darr
	EPA 1311/6010D	EPA LI	mit - 5.0 mg/L	ND	0.2	Pass	ND	0.2	Pass
Volatile Organic Compo	unds (VOCs)		1		Т	1		1	
VOCs (See laboratory results for details)	EPA 8260D/SIM	Various	Various	NA	NA	NA	NA	NA	NA
Polychlorinated Bipheny	ls (PCBs)		•		•			•	
A1016	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
A1221	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
A1232	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
A1242	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
A1248	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
A1254	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
A1260	EPA 8082A	1.2	8.6	ND	0.052	Pass	ND	0.052	Pass
Total Petroleum Hydroc		1.2	0.0	T(D)	0.052	1 433	ND	0.032	1 435
TPH-Diesel	EPA 8015M	220	680	ND	26	Pass	ND	26	Pass
TPH-Oil	EPA 8015M	500	1000	ND	52	Pass	ND	53	Pass
TPH-Gas	EPA 8015M	100	500	NA	NA NA		NA	NA	
		100	300	NA	NA	NA	NA	NA	NA
Polycyclic Aromatic Hyd		4.4	4.4	NIA	NIA	NIA	NIA	NIA	NIA
Naphthalene	EPA 8270E/3550C EPA 8270E/3550C	4.4	4.4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Methylnaphthalene									
1-Methylnaphthalene	EPA 8270E/3550C	4.2	4.2	NA	NA	NA	NA	NA	NA
Acenaphthylene	EPA 8270E/3550C EPA 8270E/3550C	100	100	NA	NA	NA	NA	NA	NA
Acenaphthene		120	120	NA	NA	NA	NA	NA	NA
Fluorene	EPA 8270E/3550C	93	93	NA	NA	NA	NA	NA	NA
Phenanthrene	EPA 8270E/3550C	460	500	NA	NA	NA	NA	NA	NA
Anthracene	EPA 8270E/3550C	4.2	4.2	NA	NA	NA	NA	NA	NA
Fluoranthene	EPA 8270E/3550C	120	120	NA	NA	NA	NA	NA	NA
Pyrene	EPA 8270E/3550C	44	44	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	EPA 8270E/3550C	10	10	NA	NA	NA	NA	NA	NA
Chrysene	EPA 8270E/3550C	30	30	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	EPA 8270E/3550C	11	21	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	EPA 8270E/3550C	39	39	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	EPA 8270E/3550C	3.6	1.5	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	EPA 8270E/3550C	11	31	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	EPA 8270E/3550C	1.1	18	NA	NA	NA	NA	NA	NA
Benzo(ghi)perylene	EPA 8270E/3550C	35	35	NA	NA	NA	NA	NA	NA
Other									
Cyanide	SM4500-CN	4.8	30	NA	NA	NA	NA	NA	NA

Notes:

ND = Not detected above the laboratory detection limit

DOH = State of Hawai'i Department of Health

EPA = Environmental Protection Agency

bss = below soil surface

EAL = Environmental Action Level mg/kg = Milligrams per kilogram NA = Not available

Table 2. Soil Sampling Summary for June 11, 2024 SamplingCSO Decommissioning - CSO Slab and Asphalt Driveway/Parking Area

			Descriptive Sample ID			
			Sample Description		Asphalt Drive ng Area (0"-6"	·
Analyte	Laboratory Analytical Method	DOH EAL Unrestricted Land Use (mg/kg)	DOH EAL Commercial/ Industrial Land Use (mg/kg)	Result (mg/kg)	Practical Quantitation Limit (PQL) (mg/kg)	Pass/Fail
RCRA 8 Metals - Total						
Arsenic	EPA 6010D/7471B	24	95	ND	10	Pass
Barium	EPA 6010D/7471B	1000	2500	120	2.6	Pass
Cadmium	EPA 6010D/7471B	14	72	ND	0.52	Pass
Chromium	EPA 6010D/7471B	1100	1100	6.6	0.52	Pass
Lead	EPA 6010D/7471B	200	800	ND	5.2	Pass
Silver	EPA 6010D/7471B	78	1000	ND	0.26	Pass
Selenium	EPA 6010D/7471B	78	1000	ND	10	Pass
Mercury	EPA 6010D/7471B	4.7	61	ND	1	Pass
, j						
RCRA Metals - TCLP						
Lead (Pb)	EPA 1311/6010D	EPA Li	mit - 5.0 mg/L	ND	0.2	Pass
Volatile Organic Compo		DITT D	lint pro ing 1	TIE .	0.2	1 455
VOCs (See laboratory	unus (vocs)				1	
results for details)	EPA 8260D/SIM	Various	Various	ND	Various	Pass
Polychlorinated Bipheny						
A1016	EPA 8082A	1.2	9.6	ND	0.052	Deee
A1010 A1221		1.2	8.6	ND	0.052	Pass
	EPA 8082A	1.2	8.6	ND	0.052	Pass
A1232	EPA 8082A	1.2	8.6	ND	0.052	Pass
A1242	EPA 8082A	1.2	8.6	ND	0.052	Pass
A1248	EPA 8082A	1.2	8.6	ND	0.052	Pass
A1254	EPA 8082A	1.2	8.6	ND	0.052	Pass
A1260	EPA 8082A	1.2	8.6	ND	0.052	Pass
Total Petroleum Hydroca			60.0			
TPH-Diesel	EPA 8015M	220	680	ND	83	Pass
TPH-Oil	EPA 8015M	500	1000	540	53	Fail
TPH-Gas	EPA 8015M	100	500	ND	9.5	Pass
Polycyclic Aromatic Hyd			1		1	
Naphthalene	EPA 8270E/3550C	4.4	4.4	ND	0.007	Pass
2-Methylnaphthalene	EPA 8270E/3550C	4.1	4.1	ND	0.007	Pass
1-Methylnaphthalene	EPA 8270E/3550C	4.2	4.2	ND	0.007	Pass
Acenaphthylene	EPA 8270E/3550C	100	100	ND	0.007	Pass
Acenaphthene	EPA 8270E/3550C	120	120	ND	0.007	Pass
Fluorene	EPA 8270E/3550C	93	93	ND	0.007	Pass
Phenanthrene	EPA 8270E/3550C	460	500	0.0085	0.007	Pass
Anthracene	EPA 8270E/3550C	4.2	4.2	ND	0.007	Pass
Fluoranthene	EPA 8270E/3550C	120	120	ND	0.007	Pass
Pyrene	EPA 8270E/3550C	44	44	0.0076	0.007	Pass
Benzo(a)anthracene	EPA 8270E/3550C	10	10	ND	0.007	Pass
Chrysene	EPA 8270E/3550C	30	30	0.0073	0.007	Pass
Benzo(b)fluoranthene	EPA 8270E/3550C	11	21	ND	0.007	Pass
Benzo(k)fluoranthene	EPA 8270E/3550C	39	39	ND	0.007	Pass
Benzo(a)pyrene	EPA 8270E/3550C	3.6	1.5	ND	0.007	Pass
Indeno(1,2,3-cd)pyrene	EPA 8270E/3550C	11	31	ND	0.007	Pass
Dibenzo(a,h)anthracene	EPA 8270E/3550C	1.1	18	ND	0.007	Pass
Benzo(ghi)perylene	EPA 8270E/3550C	35	35	ND	0.007	Pass
Other						
Cyanide	SM4500-CN	4.8	30	NA	NA	NA
Notes:		-		bss = below		

Notes:

ND = Not detected above the laboratory detection limit

DOH = State of Hawai'i Department of Health

EPA = Environmental Protection Agency

bss = below soil surface EAL = Environmental Action Level mg/kg = Milligrams per kilogram NA = Not available

Appendix **II**

FIGURE 1: DECISION UNIT (DU) BOUNDARIES MAP

Figure 1. Decision Unit (DU) Boundaries CSO Decommissioning Project Mauna Kea, Big Island, Hawaii

SOIL LABORATORY ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY FORMS

June 18, 2024

Kama Kobayashi Lehua Environmental Inc. P.O. Box 1018 Kamuela, HI 96743

Re: Analytical Data for Project 2024-243-2 Laboratory Reference No. 2406-162

Dear Kama:

Enclosed are the analytical results and associated quality control data for samples submitted on June 13, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 18, 2024 Samples Submitted: June 13, 2024 Laboratory Reference: 2406-162 Project: 2024-243-2

Case Narrative

Samples were collected on June 11, 2024 and received by the laboratory on June 13, 2024. Samples were shipped in a cooler packed with blue ice and arrived at a temperature of $<6^{\circ}$ C. They were maintained at the laboratory at a temperature of 2° C to 6° C. A copy of the cooler receipt form has been included with this report.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

All samples were processed in the laboratory following the multi-increment sampling procedures as outlined in the HEER-TGM. Additional notes will be addressed in appropriate sections as warranted.

DIESEL AND HEAVY OIL RANGE ORGANICS EPA 8015M

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-1A-1					
Laboratory ID:	06-162-01					
Diesel Range Organics	ND	26	EPA 8015M	6-17-24	6-17-24	
Residual Range Organics	ND	52	EPA 8015M	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	CSO DU-1A-2					
Laboratory ID:	06-162-02					
Diesel Range Organics	ND	26	EPA 8015M	6-17-24	6-17-24	
Residual Range Organics	ND	52	EPA 8015M	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	CSO DU-1A-3					
Laboratory ID:	06-162-03					
Diesel Range Organics	ND	26	EPA 8015M	6-17-24	6-17-24	
Residual Range Organics	ND	52	EPA 8015M	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits		01121	0 11 21	
o-Terphenyl	82	50-150				
e reipiielly!	02	00 /00				
Client ID:	CSO DU-1B					
Laboratory ID:	06-162-04					
Diesel Range Organics	ND	26	EPA 8015M	6-17-24	6-18-24	
Residual Range Organics	ND	53	EPA 8015M	6-17-24	6-18-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	55	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS EPA 8015M QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0617S1					
ND	25	EPA 8015M	6-17-24	6-17-24	
ND	50	EPA 8015M	6-17-24	6-17-24	
Percent Recovery	Control Limits				
88	50-150				
	MB0617S1 ND ND Percent Recovery	MB0617S1ND25ND50Percent RecoveryControl Limits	MB0617S1ND25EPA 8015MND50EPA 8015MPercent RecoveryControl Limits	Result PQL Method Prepared MB0617S1 -<	Result PQL Method Prepared Analyzed MB0617S1 -

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike Leve		Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-18	33-02									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	40	
Residual Range	ND	ND	NA	NA		N	A	NA	NA	40	
Surrogate:											
o-Terphenyl						75	75	50-150			

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

Arrahata	Decult	DOI	Mathad	Date Dromono d	Date	Flore
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-1A-1					
Laboratory ID:	06-162-01					
Aroclor 1016	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1221	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1232	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1242	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1248	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1254	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1260	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1262	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1268	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits				
DCB	91	40-134				
Client ID:	CSO DU-1A-2					
Laboratory ID:	06-162-02					
Aroclor 1016	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1221	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1232	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1242	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1248	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1254	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1260	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1262	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1268	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits	217(0002/(0 11 21	01121	
DCB	101	40-134				
	101	40 104				
Client ID:	CSO DU-1A-3					
_aboratory ID:	06-162-03					
Aroclor 1016	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1221	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1232	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1242	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1248	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1254	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1260	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1262	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Aroclor 1268	ND	0.052	EPA 8082A	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits				
DCB	104	40-134				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-1B					
Laboratory ID:	06-162-04					
Aroclor 1016	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1221	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1232	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1242	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1248	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1254	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1260	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1262	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1268	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Surrogate:	Percent Recovery	Control Limits				
DCB	83	40-134				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

onita. mg/rtg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0617S1					
Aroclor 1016	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1221	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1232	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1242	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1248	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1254	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1260	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1262	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1268	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits				
DCB	102	40-134				

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Spike Level		Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB06	SB0617S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.394	0.452	0.500	0.500	N/A	79	90	60-115	14	23	
Surrogate:											
DCB						102	107	40-134			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL LEAD EPA 6010D

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-1A-1					
Laboratory ID:	06-162-01					
Lead	ND	5.2	EPA 6010D	6-17-24	6-17-24	
Client ID:	CSO DU-1A-2					
Laboratory ID:	06-162-02					
Lead	ND	5.2	EPA 6010D	6-17-24	6-17-24	
Client ID:	CSO DU-1A-3					
Laboratory ID:	06-162-03					
Lead	ND	5.2	EPA 6010D	6-17-24	6-17-24	
Client ID:	CSO DU-1B					
Laboratory ID:	06-162-04					
Lead	ND	5.2	EPA 6010D	6-17-24	6-17-24	

TOTAL LEAD EPA 6010D QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

								Date	Dat			
Analyte	Result			PQL		ethod	ł	Prepared	Analy	zed	Flags	
METHOD BLANK												
Laboratory ID:	I	MB0617SM ²	1									
Lead		ND		5.0	EP	A 6010	DD	6-17-24	6-17-	24		
					Source	Pe	rcent	Recovery		RPD		
Analyte	Result		Spike Level		Result	Rec	overy	Limits	RPD	Limit	Flags	
DUPLICATE												
Laboratory ID:	06-16	69-13										
	ORIG	DUP										
Lead	ND	ND	NA	NA		I	NA	NA	NA	20		
MATRIX SPIKES												
Laboratory ID:	06-10	69-13										
	MS	MSD	MS	MSD		MS	MSD					
Lead	240	237	250	250	ND) 96 95		75-125	1 20			

TCLP LEAD EPA 1311/6010D

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-1A-1					
Laboratory ID:	06-162-01					
Lead	ND	0.20	EPA 6010D	6-18-24	6-18-24	
Client ID:	CSO DU-1A-2					
Laboratory ID:	06-162-02					
Lead	ND	0.20	EPA 6010D	6-18-24	6-18-24	
Client ID:	CSO DU-1A-3					
Laboratory ID:	06-162-03					
Lead	ND	0.20	EPA 6010D	6-18-24	6-18-24	
Client ID:	CSO DU-1B					
Laboratory ID:	06-162-04					
Lead	ND	0.20	EPA 6010D	6-18-24	6-18-24	

10

TCLP LEAD EPA 1311/6010D QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

							Date	Dat		
	Result		PQL	Μ	ethod		Prepared	Analyz	zed	Flags
ſ	MB0618TM1	l								
	ND		0.20	EP	A 6010)D	6-18-24	6-18-	24	
				Source	Dev	t	Beeeven			
							-			
Result		Spike Level		Result	Rec	overy	Limits	RPD	Limit	Flags
06-16	62-01									
ORIG	DUP									
ND	ND	NA	NA		1	NA	NA	NA	20	
06-16	62-01									
MS	MSD	MS	MSD		MS MSD					
10.7	10.7	10.0	10.0	ND) 107 107		75-125 0		20	
	Re: 06-16 0RIG ND 06-16 MS	MB0618TM1 ND Result 06-162-01 ORIG DUP ND ND 06-162-01 MS MSD	MB0618TM1 ND Result Spike 06-162-01 0 ND NA 06-162-01 NA 06-162-01 NA	MB0618TM1 ND 0.20 Result Spike Level 06-162-01	MB0618TM1 ND 0.20 EP/ ND 0.20 EP/ Source Source Result 06-162-01 ORIG DUP ND NA NA 06-162-01 MD NA NA 06-162-01 MS MSD MS MSD	MB0618TM1 ND 0.20 EPA 6010 ND 0.20 EPA 6010 Source Per Result Spike Level Result Rec 06-162-01 06 06 06 06 ND NA NA NA 06-162-01 06 06 06 06 MS MSD MS MSD MS	MB0618TM1 ND 0.20 EPA 6010D ND 0.20 EPA 6010D Source Percent Result Spike Level Result Recovery 06-162-01	Result PQL Method Prepared MB0618TM1 0.20 EPA 6010D 6-18-24 ND 0.20 EPA 6010D 6-18-24 Result Spike Level Result Percent Recovery 06-162-01 0 NA NA NA 06-162-01 NA NA NA NA 06-162-01 MS MS MS MS MS	Result PQL Method Prepared Analyz MB0618TM1 ND 0.20 EPA 6010D 6-18-24 6-18-24 ND 0.20 EPA 6010D 6-18-24 6-18-24 Result Spike Level Result Recovery Limits RPD 06-162-01 00 ND NA NA NA NA 06-162-01 ND NA NA NA NA 06-162-01 MS MS MS MS MS MS	Result PQL Method Prepared Analyzed MB0618TM1 ND 0.20 EPA 6010D 6-18-24 6-18-24 ND 0.20 EPA 6010D 6-18-24 6-18-24 RPD Result Spike Level Result Recovery Limits RPD Limit 06-162-01 ORIG DUP NA NA NA NA 20 06-162-01 MS MS MS MS MS MS MS

Date of Report: June 18, 2024 Samples Submitted: June 13, 2024 Laboratory Reference: 2406-162 Project: 2024-243-2

% MOISTURE MULTI-INCREMENT SAMPLING

Client ID	Lab ID	% Moisture	Date Analyzed
CSO DU-1A-1	06-162-01	4	6-17-24
CSO DU-1A-2	06-162-02	4	6-17-24
CSO DU-1A-3	06-162-03	4	6-17-24
CSO DU-1B	06-162-04	5	6-17-24

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		4 CSO DU-1B	3 CSO DU-1 A-3	2 CSO DU-1A-2	1 CSO DU-1A-1	Lab 10 Sample Identification	CALVIN ARCA	KAMA KOBAYASHI	CSO DECOMMISSIONING - CSO Slab	2024-243-2	Company: LEHUA ENVIRONMENTAL INC.	Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond, WA 98052 Phone: (425) 883-3881 - www.onsite-env.com	Environmental Inc.
Reviewed/Date					0	LEHUA ENVI	Company		6-11-24	6-11-24	6-11-24	6-11-24	Date Time Sampled Sampled	(other)		Standard (7 Days)		Same Day	Turnaround Request (In working days)	Ch
ate					A	LEHUA ENVIRONMENTAL INC.				-		IS	Numb	er of C	ontaini		3 Days	X 1 Day		Chain of C
	, i				a/21/9	6-12-24	Date		×	×		X	NWTP NWTP	H-Gx		/ SG Cli PA 801	ean-up)	1	Laboratory Numb	Custody
n en					y lavo	6-12-24 12:00pm	Time				X		Volatile Haloge	es 8260 nated)C Volatile	PA 801 s 8260C ers Only)			y Number:	
Chromatog	Data Package:	1	l			2	Comments/			×	X	X		w-leve 270D/	8270D I PAHs) SIM (lov				00	
Chromatograms with final report	ge: Standard						Comments/Special Instructions		<	~	<u> </u>		Organo	phosp	horus F	cides 80 'esticide	es 8270	D/SIM	162	
	Level						lons	Y	<	×	×	X	Total R Total M	-	tellerigeneer passes	Lead				
Electron									<	×	X	X	TCLP		and a second constrained	Lead				Page _
Electronic Data Deliverables (EDDs)	Level IV								×	×	X	X	HEM (c Multi Non-	-incre	mental	1664A sample	prepar	ation		1 of
les (EDDs) 🗌												5	% Mois	ture						1
Sample/Cooler Receipt and Acceptance Checklist

Client: <u>UE /</u> Client Project Name/Number: <u>2024-243-2</u> OnSite Project Number: <u>06-162</u>		Initiated by: Date Initiate	AM ed: <u>6/13/271</u>
1.0 Cooler Verification			
1.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A 1 2 3 4
1.2 Were the custody seals intact?	Yes	No	1234
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	NA 1234
1.4 Were the samples delivered on ice or blue ice?	Ves	No	N/A 1234
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	N/A Temperature:
1.6 Have shipping bills (if any) been attached to the back of this form?	Ces-	N/A	
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx, OSE Pickup Other
2.0 Chain of Custody Verification			
2.1 Was a Chain of Custody submitted with the samples?	Yes	No	1 2 3 4
2.2 Was the COC legible and written in permanent ink?	Yes	No	1 2 3 4
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No	1 2 3 4
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Yes	No	1 2 3 4
2.5 Were all of the samples listed on the COC submitted?	(es)	No	1 2 3 4
2.6 Were any of the samples submitted omitted from the COC?	Yes	No,	1234
3.0 Sample Verification			
3.1 Were any sample containers broken or compromised?	Yes	No	1 2 3 4
3.2 Were any sample labels missing or illegible?	Yes	No	1 2 3 4
3.3 Have the correct containers been used for each analysis requested?	Yes	No	1 2 3 4
3.4 Have the samples been correctly preserved?	Yes	No	NA 1234
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Yes	No	NA 1234
3.6 Is there sufficient sample submitted to perform requested analyses?	(es)	No	1 2 3 4
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No	1 2 3 4
3.8 Was method 5035A used?	Yes	No	NA 1234
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#		1234
Explain any discrepancies:			

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls

July 1, 2024

Kama Kobayashi Lehua Environmental Inc. P.O. Box 1018 Kamuela, HI 96743

Re: Analytical Data for Project 2024-243 Laboratory Reference No. 2406-039

Dear Kama:

Enclosed are the analytical results and associated quality control data for samples submitted on June 5, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 1, 2024 Samples Submitted: June 5, 2024 Laboratory Reference: 2406-039 Project: 2024-243

Case Narrative

Samples were collected on May 31 and June 3, 2024 and received by the laboratory on June 5, 2024. Samples were shipped in a cooler packed with blue ice and arrived at a temperature of $<6^{\circ}$ C. They were maintained at the laboratory at a temperature of 2° C to 6° C. A copy of the cooler receipt form has been included with this report.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

All samples were processed in the laboratory following the multi-increment sampling procedures as outlined in the HEER-TGM. Additional notes will be addressed in appropriate sections as warranted.

Volatiles EPA 8260D Analysis

The percent recovery for Bromomethane is outside the control limits in the Spike Blank and Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS EPA 8015M

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU2					
Laboratory ID:	06-039-01					
Gasoline	ND	9.0	EPA 8015M	6-6-24	6-6-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	62-134				
Client ID:	CSO DU3					
Laboratory ID:	06-039-02					
Gasoline	ND	14	EPA 8015M	6-6-24	6-6-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	62-134				

GASOLINE RANGE ORGANICS EPA 8015M QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

onits. mg/kg (ppm)						Date	Date)	
Analyte		Result	PQL	M	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0606S1							
Gasoline		ND	5.0	EPA	8015M	6-6-24	6-6-2	4	
Surrogate:	Pei	rcent Recove	ery Control Lir	nits					
Fluorobenzene		95	62-134						
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-03	39-01							
	ORIG	DUP							
Gasoline	ND	ND	NA NA		NA	NA	NA	30	
Surrogate:									
Fluorobenzene					111 117	62-134			

DIESEL AND HEAVY OIL RANGE ORGANICS EPA 8015M

Matrix: Soil Units: mg/Kg (ppm)

onito. hightig (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU2					
Laboratory ID:	06-039-01					
Diesel Range Organics	ND	27	EPA 8015M	6-11-24	6-11-24	
Residual Range Organics	ND	43	EPA 8015M	6-11-24	6-11-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				
Client ID:	CSO DU3					
Laboratory ID:	06-039-02					
Diesel Range Organics	ND	28	EPA 8015M	6-11-24	6-11-24	
Residual Range Organics	150	45	EPA 8015M	6-11-24	6-11-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS EPA 8015M QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0611S1					
Diesel Range Organics	ND	25	EPA 8015M	6-11-24	6-11-24	
Residual Range Organics	ND	40	EPA 8015M	6-11-24	6-11-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-09	90-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	40	
Residual Range Organics	65.8	49.8	NA	NA		NA	NA	28	40	
Surrogate:										
o-Terphenyl						76 77	50-150			

VOLATILE ORGANICS EPA 8260D/SIM page 1 of 2

Matrix: Soil Units: mg/kg

Units. htg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU2					
Laboratory ID:	06-039-01					
Dichlorodifluoromethane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Chloromethane	ND	0.45	EPA 8260D	6-6-24	6-6-24	
Vinyl Chloride (SIM)	ND	0.0045	EPA 8260D/SIM	6-6-24	6-6-24	
Bromomethane	ND	0.45	EPA 8260D	6-6-24	6-6-24	
Chloroethane	ND	0.45	EPA 8260D	6-6-24	6-6-24	
Trichlorofluoromethane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,1-Dichloroethene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
lodomethane	ND	0.91	EPA 8260D	6-6-24	6-6-24	
Methylene Chloride	ND	0.45	EPA 8260D	6-6-24	6-6-24	
(trans) 1,2-Dichloroethene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,1-Dichloroethane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
2,2-Dichloropropane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
(cis) 1,2-Dichloroethene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Bromochloromethane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Chloroform (SIM)	ND	0.0045	EPA 8260D/SIM	6-6-24	6-6-24	
1,1,1-Trichloroethane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Carbon Tetrachloride	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,1-Dichloropropene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Benzene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,2-Dichloroethane (SIM)	ND	0.0045	EPA 8260D/SIM	6-6-24	6-6-24	
Trichloroethene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,2-Dichloropropane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Dibromomethane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Bromodichloromethane (SIM)	ND	0.0045	EPA 8260D/SIM	6-6-24	6-6-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU2					
Laboratory ID:	06-039-01					
2-Chloroethyl Vinyl Ether	ND	0.64	EPA 8260D	6-6-24	6-6-24	
(cis) 1,3-Dichloropropene (SIM)	ND	0.0045	EPA 8260D/SIM	6-6-24	6-6-24	
Toluene	ND	0.45	EPA 8260D	6-6-24	6-6-24	
(trans) 1,3-Dichloropropene (SIM)	ND	0.0045	EPA 8260D/SIM	6-6-24	6-6-24	
1,1,2-Trichloroethane (SIM)	ND	0.0091	EPA 8260D/SIM	6-6-24	6-6-24	
Tetrachloroethene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,3-Dichloropropane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Dibromochloromethane (SIM)	ND	0.0045	EPA 8260D/SIM	6-6-24	6-6-24	
1,2-Dibromoethane (SIM)	ND	0.0045	EPA 8260D/SIM	6-6-24	6-6-24	
Chlorobenzene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,1,1,2-Tetrachloroethane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Ethylbenzene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
m,p-Xylene	ND	0.18	EPA 8260D	6-6-24	6-6-24	
o-Xylene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Bromoform	ND	0.45	EPA 8260D	6-6-24	6-6-24	
Bromobenzene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,1,2,2-Tetrachloroethane	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,2,3-Trichloropropane (SIM)	ND	0.0091	EPA 8260D/SIM	6-6-24	6-6-24	
2-Chlorotoluene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
4-Chlorotoluene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,3-Dichlorobenzene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,4-Dichlorobenzene (SIM)	ND	0.0091	EPA 8260D/SIM	6-6-24	6-6-24	
1,2-Dichlorobenzene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
1,2-Dibromo-3-chloropropane (SIM)	ND	0.013	EPA 8260D/SIM	6-6-24	6-6-24	
1,2,4-Trichlorobenzene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Hexachlorobutadiene (SIM)	ND	0.0091	EPA 8260D/SIM	6-6-24	6-6-24	
1,2,3-Trichlorobenzene	ND	0.091	EPA 8260D	6-6-24	6-6-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	91	69-124				
Toluene-d8	108	80-118				
4-Bromofluorobenzene	92	75-123				

8

VOLATILE ORGANICS EPA 8260D/SIM page 1 of 2

Matrix: Soil Units: mg/kg

Units. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU3					
Laboratory ID:	06-039-02					
Dichlorodifluoromethane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Chloromethane	ND	0.72	EPA 8260D	6-6-24	6-6-24	
Vinyl Chloride (SIM)	ND	0.0072	EPA 8260D/SIM	6-6-24	6-6-24	
Bromomethane	ND	0.72	EPA 8260D	6-6-24	6-6-24	
Chloroethane	ND	0.72	EPA 8260D	6-6-24	6-6-24	
Trichlorofluoromethane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,1-Dichloroethene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
lodomethane	ND	1.4	EPA 8260D	6-6-24	6-6-24	
Methylene Chloride	ND	0.72	EPA 8260D	6-6-24	6-6-24	
(trans) 1,2-Dichloroethene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,1-Dichloroethane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
2,2-Dichloropropane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
(cis) 1,2-Dichloroethene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Bromochloromethane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Chloroform (SIM)	ND	0.0072	EPA 8260D/SIM	6-6-24	6-6-24	
1,1,1-Trichloroethane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Carbon Tetrachloride	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,1-Dichloropropene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Benzene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,2-Dichloroethane (SIM)	ND	0.0072	EPA 8260D/SIM	6-6-24	6-6-24	
Trichloroethene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,2-Dichloropropane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Dibromomethane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Bromodichloromethane (SIM)	ND	0.0072	EPA 8260D/SIM	6-6-24	6-6-24	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU3					
Laboratory ID:	06-039-02					
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	6-6-24	6-6-24	
(cis) 1,3-Dichloropropene (SIM)	ND	0.0072	EPA 8260D/SIM	6-6-24	6-6-24	
Toluene	ND	0.72	EPA 8260D	6-6-24	6-6-24	
(trans) 1,3-Dichloropropene (SIM)	ND	0.0072	EPA 8260D/SIM	6-6-24	6-6-24	
1,1,2-Trichloroethane (SIM)	ND	0.014	EPA 8260D/SIM	6-6-24	6-6-24	
Tetrachloroethene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,3-Dichloropropane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Dibromochloromethane (SIM)	ND	0.0072	EPA 8260D/SIM	6-6-24	6-6-24	
1,2-Dibromoethane (SIM)	ND	0.0072	EPA 8260D/SIM	6-6-24	6-6-24	
Chlorobenzene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,1,1,2-Tetrachloroethane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Ethylbenzene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
m,p-Xylene	ND	0.29	EPA 8260D	6-6-24	6-6-24	
o-Xylene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Bromoform	ND	0.72	EPA 8260D	6-6-24	6-6-24	
Bromobenzene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,1,2,2-Tetrachloroethane	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,2,3-Trichloropropane (SIM)	ND	0.014	EPA 8260D/SIM	6-6-24	6-6-24	
2-Chlorotoluene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
4-Chlorotoluene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,3-Dichlorobenzene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,4-Dichlorobenzene (SIM)	ND	0.014	EPA 8260D/SIM	6-6-24	6-6-24	
1,2-Dichlorobenzene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
1,2-Dibromo-3-chloropropane (SIM)	ND	0.020	EPA 8260D/SIM	6-6-24	6-6-24	
1,2,4-Trichlorobenzene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Hexachlorobutadiene (SIM)	ND	0.014	EPA 8260D/SIM	6-6-24	6-6-24	
1,2,3-Trichlorobenzene	ND	0.14	EPA 8260D	6-6-24	6-6-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	69-124				
Toluene-d8	108	80-118				
4-Bromofluorobenzene	75	75-123				

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0606S2					
Dichlorodifluoromethane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Chloromethane	ND	0.25	EPA 8260D	6-6-24	6-6-24	
Vinyl Chloride (SIM)	ND	0.0025	EPA 8260D/SIM	6-6-24	6-6-24	
Bromomethane	ND	0.25	EPA 8260D	6-6-24	6-6-24	
Chloroethane	ND	0.25	EPA 8260D	6-6-24	6-6-24	
Trichlorofluoromethane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,1-Dichloroethene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
lodomethane	ND	0.50	EPA 8260D	6-6-24	6-6-24	
Methylene Chloride	ND	0.25	EPA 8260D	6-6-24	6-6-24	
(trans) 1,2-Dichloroethene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,1-Dichloroethane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
2,2-Dichloropropane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
(cis) 1,2-Dichloroethene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Bromochloromethane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Chloroform (SIM)	ND	0.0025	EPA 8260D/SIM	6-6-24	6-6-24	
1,1,1-Trichloroethane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Carbon Tetrachloride	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,1-Dichloropropene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Benzene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,2-Dichloroethane (SIM)	ND	0.0025	EPA 8260D/SIM	6-6-24	6-6-24	
Trichloroethene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,2-Dichloropropane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Dibromomethane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Bromodichloromethane (SIM)	ND	0.0025	EPA 8260D/SIM	6-6-24	6-6-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0606S2					
2-Chloroethyl Vinyl Ether	ND	0.35	EPA 8260D	6-6-24	6-6-24	
(cis) 1,3-Dichloropropene (SIM)	ND	0.0025	EPA 8260D/SIM	6-6-24	6-6-24	
Toluene	ND	0.25	EPA 8260D	6-6-24	6-6-24	
(trans) 1,3-Dichloropropene (SIM)	ND	0.0025	EPA 8260D/SIM	6-6-24	6-6-24	
1,1,2-Trichloroethane (SIM)	ND	0.0050	EPA 8260D/SIM	6-6-24	6-6-24	
Tetrachloroethene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,3-Dichloropropane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Dibromochloromethane (SIM)	ND	0.0025	EPA 8260D/SIM	6-6-24	6-6-24	
1,2-Dibromoethane (SIM)	ND	0.0025	EPA 8260D/SIM	6-6-24	6-6-24	
Chlorobenzene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,1,1,2-Tetrachloroethane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Ethylbenzene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
m,p-Xylene	ND	0.10	EPA 8260D	6-6-24	6-6-24	
o-Xylene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Bromoform	ND	0.25	EPA 8260D	6-6-24	6-6-24	
Bromobenzene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,1,2,2-Tetrachloroethane	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,2,3-Trichloropropane (SIM)	ND	0.0050	EPA 8260D/SIM	6-6-24	6-6-24	
2-Chlorotoluene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
4-Chlorotoluene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,3-Dichlorobenzene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,4-Dichlorobenzene (SIM)	ND	0.0050	EPA 8260D/SIM	6-6-24	6-6-24	
1,2-Dichlorobenzene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
1,2-Dibromo-3-chloropropane (SIM)	ND	0.0070	EPA 8260D/SIM	6-6-24	6-6-24	
1,2,4-Trichlorobenzene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Hexachlorobutadiene (SIM)	ND	0.0050	EPA 8260D/SIM	6-6-24	6-6-24	
1,2,3-Trichlorobenzene	ND	0.050	EPA 8260D	6-6-24	6-6-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	69-124				
Toluene-d8	109	80-118				
4-Bromofluorobenzene	107	75-123				

12

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

Units: mg/kg				F	Percent	Recovery		RPD	
Analyte	Res	ult	Spike Leve		ecovery	Limits	RPD	Limit	Flags
SPIKE BLANKS			•						
Laboratory ID:	SB06	06S1							
	SB	SBD	SB SB	D S	B SBD				
Dichlorodifluoromethane	0.0487	0.0479	0.0500 0.05	500 9	7 96	24-162	2	24	
Chloromethane	0.0508	0.0527	0.0500 0.05	500 10	02 105	41-143	4	22	
Vinyl Chloride	0.0540	0.0551	0.0500 0.05	500 10	08 110	52-141	2	20	
Bromomethane	0.0924	0.0888	0.0500 0.05	500 18	85 178	37-145	4	23	١,١
Chloroethane	0.0619	0.0635	0.0500 0.05	500 12	24 127	54-148	3	19	
Trichlorofluoromethane	0.0574	0.0588	0.0500 0.05	5 00 1 1	5 118	65-142	2	18	
1,1-Dichloroethene	0.0588	0.0615	0.0500 0.05	5 00 1 1	8 123	74-133	4	16	
lodomethane	0.0487	0.0467	0.0500 0.05	500 9	7 93	36-133	4	31	
Methylene Chloride	0.0471	0.0521	0.0500 0.05	500 9	4 104	60-135	10	23	
(trans) 1,2-Dichloroethene	0.0581	0.0604	0.0500 0.05	5 00 1 1	6 121	74-131	4	15	
1,1-Dichloroethane	0.0586	0.0597	0.0500 0.05	5 00 1 1	7 119	74-130	2	15	
2,2-Dichloropropane	0.0589	0.0685	0.0500 0.05	5 00 1 1	8 137	74-137	15	16	
(cis) 1,2-Dichloroethene	0.0571	0.0635	0.0500 0.05	5 00 1 1	4 127	71-136	11	15	
Bromochloromethane	0.0436	0.0469	0.0500 0.05	500 8	7 94	78-128	7	15	
Chloroform	0.0557	0.0578	0.0500 0.05	5 00 1 1	1 116	75-128	4	15	
1,1,1-Trichloroethane	0.0574	0.0589	0.0500 0.05	5 00 1 1	5 118	73-129	3	15	
Carbon Tetrachloride	0.0499	0.0547	0.0500 0.05	500 10	0 109	69-134	9	15	
1,1-Dichloropropene	0.0554	0.0619	0.0500 0.05	5 00 1 1	1 124	73-127	11	15	
Benzene	0.0577	0.0606	0.0500 0.05	5 00 1 1	5 121	75-126	5	15	
1,2-Dichloroethane	0.0481	0.0519	0.0500 0.05	500 9	6 104	70-133	8	15	
Trichloroethene	0.0545	0.0529	0.0500 0.05	500 10	9 106	80-130	3	15	
1,2-Dichloropropane	0.0588	0.0610	0.0500 0.05	5 00 1 1	8 122	78-131	4	16	
Dibromomethane	0.0456	0.0491	0.0500 0.05	500 9	1 98	72-136	7	28	
Bromodichloromethane	0.0577	0.0583	0.0500 0.05	5 00 1 1	5 117	80-129	1	15	
(cis) 1,3-Dichloropropene	0.0572	0.0621	0.0500 0.05	5 00 1 1	4 124	80-132	8	17	
Toluene	0.0581	0.0590	0.0500 0.05	5 00 1 1	6 118	78-124	2	17	
(trans) 1,3-Dichloropropene	0.0584	0.0600	0.0500 0.05	500 11	7 120	80-130	3	15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	06S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1,2-Trichloroethane	0.0465	0.0510	0.0500	0.0500	93	102	80-123	9	15	
Tetrachloroethene	0.0621	0.0612	0.0500	0.0500	124	122	80-130	1	15	
1,3-Dichloropropane	0.0522	0.0566	0.0500	0.0500	104	113	80-122	8	15	
Dibromochloromethane	0.0476	0.0486	0.0500	0.0500	95	97	80-129	2	15	
1,2-Dibromoethane	0.0443	0.0478	0.0500	0.0500	89	96	80-125	8	15	
Chlorobenzene	0.0496	0.0500	0.0500	0.0500	99	100	80-119	1	15	
1,1,1,2-Tetrachloroethane	0.0505	0.0533	0.0500	0.0500	101	107	80-124	5	15	
Ethylbenzene	0.0581	0.0593	0.0500	0.0500	116	119	80-120	2	15	
m,p-Xylene	0.117	0.117	0.100	0.100	117	117	80-121	0	15	
o-Xylene	0.0584	0.0591	0.0500	0.0500	117	118	80-120	1	15	
Bromoform	0.0477	0.0490	0.0500	0.0500	95	98	79-132	3	15	
Bromobenzene	0.0505	0.0504	0.0500	0.0500	101	101	80-124	0	15	
1,1,2,2-Tetrachloroethane	0.0446	0.0492	0.0500	0.0500	89	98	75-128	10	19	
1,2,3-Trichloropropane	0.0462	0.0511	0.0500	0.0500	92	102	74-128	10	19	
2-Chlorotoluene	0.0518	0.0519	0.0500	0.0500	104	104	80-126	0	15	
4-Chlorotoluene	0.0530	0.0508	0.0500	0.0500	106	102	80-129	4	15	
1,3-Dichlorobenzene	0.0541	0.0530	0.0500	0.0500	108	106	80-125	2	15	
1,4-Dichlorobenzene	0.0527	0.0521	0.0500	0.0500	105	104	78-127	1	15	
1,2-Dichlorobenzene	0.0510	0.0521	0.0500	0.0500	102	104	79-127	2	15	
1,2-Dibromo-3-chloropropane	0.0393	0.0426	0.0500	0.0500	79	85	68-143	8	26	
1,2,4-Trichlorobenzene	0.0557	0.0516	0.0500	0.0500	111	103	77-142	8	19	
Hexachlorobutadiene	0.0632	0.0614	0.0500	0.0500	126	123	73-135	3	19	
1,2,3-Trichlorobenzene	0.0497	0.0495	0.0500	0.0500	99	99	77-139	0	19	
Surrogate:										
Dibromofluoromethane					97	92	69-124			
Toluene-d8					110	107	80-118			
4-Bromofluorobenzene					96	109	75-123			

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU2					
Laboratory ID:	06-039-01					
Naphthalene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
2-Methylnaphthalene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
1-Methylnaphthalene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Acenaphthylene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Acenaphthene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Fluorene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Phenanthrene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Anthracene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Fluoranthene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Pyrene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[a]anthracene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Chrysene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo(j,k)fluoranthene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[a]pyrene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Indeno(1,2,3-c,d)pyrene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[g,h,i]perylene	ND	0.0072	EPA 8270E/SIM	6-11-24	6-11-24	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	47-112				
Pyrene-d10	92	48-129				
Terphenyl-d14	88	51-114				

15

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU3					
Laboratory ID:	06-039-02					
Naphthalene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
2-Methylnaphthalene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
1-Methylnaphthalene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Acenaphthylene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Acenaphthene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Fluorene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Phenanthrene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Anthracene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Fluoranthene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Pyrene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[a]anthracene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Chrysene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[b]fluoranthene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo(j,k)fluoranthene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[a]pyrene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Indeno(1,2,3-c,d)pyrene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[g,h,i]perylene	ND	0.0075	EPA 8270E/SIM	6-11-24	6-11-24	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	47-112				
Pyrene-d10	96	48-129				
Terphenyl-d14	93	51-114				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0611S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Acenaphthylene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Acenaphthene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Fluorene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Phenanthrene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Anthracene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Fluoranthene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Pyrene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Chrysene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
ndeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270E/SIM	6-11-24	6-11-24	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	47-112				
Pyrene-d10	101	48-129				
Terphenyl-d14	93	51-114				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					F	Perc	ent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	R	eco	very	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB06	511S1									
	SB	SBD	SB	SBD	S	В	SBD				
Naphthalene	0.0727	0.0729	0.0833	0.0833	8	7	88	64-115	0	15	
Acenaphthylene	0.0720	0.0746	0.0833	0.0833	8	3	90	68-118	4	15	
Acenaphthene	0.0718	0.0750	0.0833	0.0833	8	3	90	67-116	4	15	
Fluorene	0.0724	0.0757	0.0833	0.0833	8	7	91	69-120	4	15	
Phenanthrene	0.0745	0.0772	0.0833	0.0833	8	9	93	67-120	4	15	
Anthracene	0.0918	0.0943	0.0833	0.0833	11	0	113	71-118	3	15	
Fluoranthene	0.0812	0.0828	0.0833	0.0833	9	7	99	73-118	2	15	
Pyrene	0.0814	0.0828	0.0833	0.0833	9	8	99	71-118	2	15	
Benzo[a]anthracene	0.0874	0.0914	0.0833	0.0833	10	5	110	60-128	4	15	
Chrysene	0.0773	0.0791	0.0833	0.0833	9	3	95	70-121	2	15	
Benzo[b]fluoranthene	0.0747	0.0836	0.0833	0.0833	9	C	100	68-123	11	15	
Benzo(j,k)fluoranthene	0.0804	0.0777	0.0833	0.0833	9	7	93	73-123	3	17	
Benzo[a]pyrene	0.0821	0.0860	0.0833	0.0833	9	9	103	72-120	5	15	
Indeno(1,2,3-c,d)pyrene	0.0838	0.0888	0.0833	0.0833	10	1	107	64-122	6	15	
Dibenz[a,h]anthracene	0.0824	0.0861	0.0833	0.0833	99	9	103	72-120	4	15	
Benzo[g,h,i]perylene	0.0794	0.0833	0.0833	0.0833	9	5	100	71-117	5	15	
Surrogate:											
2-Fluorobiphenyl					8	1	83	47-112			
Pyrene-d10					9	5	96	48-129			
Terphenyl-d14					9	4	93	51-114			

18

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

onito. mg/rtg (ppm/				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU2					
Laboratory ID:	06-039-01					
Aroclor 1016	ND	0.054	EPA 8082A	6-11-24	6-11-24	
Aroclor 1221	ND	0.054	EPA 8082A	6-11-24	6-11-24	
Aroclor 1232	ND	0.054	EPA 8082A	6-11-24	6-11-24	
Aroclor 1242	ND	0.054	EPA 8082A	6-11-24	6-11-24	
Aroclor 1248	ND	0.054	EPA 8082A	6-11-24	6-11-24	
Aroclor 1254	ND	0.054	EPA 8082A	6-11-24	6-11-24	
Aroclor 1260	ND	0.054	EPA 8082A	6-11-24	6-11-24	
Aroclor 1262	ND	0.054	EPA 8082A	6-11-24	6-11-24	
Aroclor 1268	ND	0.054	EPA 8082A	6-11-24	6-11-24	
Surrogate:	Percent Recovery	Control Limits				
DCB	104	40-151				
Client ID:	CSO DU3					
Laboratory ID:	06-039-02					
Aroclor 1016	ND	0.056	EPA 8082A	6-11-24	6-11-24	
Aroclor 1221	ND	0.056	EPA 8082A	6-11-24	6-11-24	
Aroclor 1232	ND	0.056	EPA 8082A	6-11-24	6-11-24	
Aroclor 1242	ND	0.056	EPA 8082A	6-11-24	6-11-24	
Aroclor 1248	ND	0.056	EPA 8082A	6-11-24	6-11-24	
Aroclor 1254	ND	0.056	EPA 8082A	6-11-24	6-11-24	
Aroclor 1260	ND	0.056	EPA 8082A	6-11-24	6-11-24	
Aroclor 1262	ND	0.056	EPA 8082A	6-11-24	6-11-24	
Aroclor 1268	ND	0.056	EPA 8082A	6-11-24	6-11-24	
Surrogate:	Percent Recovery	Control Limits				
DCB	101	40-151				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

onito: hig/rtg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0611S1					
Aroclor 1016	ND	0.025	EPA 8082A	6-11-24	6-11-24	
Aroclor 1221	ND	0.025	EPA 8082A	6-11-24	6-11-24	
Aroclor 1232	ND	0.025	EPA 8082A	6-11-24	6-11-24	
Aroclor 1242	ND	0.025	EPA 8082A	6-11-24	6-11-24	
Aroclor 1248	ND	0.025	EPA 8082A	6-11-24	6-11-24	
Aroclor 1254	ND	0.025	EPA 8082A	6-11-24	6-11-24	
Aroclor 1260	ND	0.025	EPA 8082A	6-11-24	6-11-24	
Aroclor 1262	ND	0.025	EPA 8082A	6-11-24	6-11-24	
Aroclor 1268	ND	0.025	EPA 8082A	6-11-24	6-11-24	
Surrogate:	Percent Recovery	Control Limits				
DCB	122	40-151				

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB06	611S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.456	0.437	0.500	0.500	N/A	91	87	60-115	4	23	
Surrogate:											
DCB						120	110	40-151			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU2					
Laboratory ID:	06-039-01					
Cadmium	ND	0.54	EPA 6010D	6-7-24	6-7-24	
Chromium	5.8	0.54	EPA 6010D	6-7-24	6-7-24	
Lead	ND	5.4	EPA 6010D	6-7-24	6-7-24	
Silver	ND	1.1	EPA 6010D	6-7-24	6-7-24	

Client ID:	CSO DU3					
Laboratory ID:	06-039-02					
Cadmium	ND	0.56	EPA 6010D	6-7-24	6-7-24	
Chromium	5.2	0.56	EPA 6010D	6-7-24	6-7-24	
Lead	ND	5.6	EPA 6010D	6-7-24	6-7-24	
Silver	ND	1.1	EPA 6010D	6-7-24	6-7-24	

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0607SM2					
Cadmium	ND	0.50	EPA 6010D	6-7-24	6-7-24	
Chromium	ND	0.50	EPA 6010D	6-7-24	6-7-24	
Lead	ND	5.0	EPA 6010D	6-7-24	6-7-24	
Silver	ND	1.0	EPA 6010D	6-7-24	6-7-24	

					Source	Ре	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-06	61-01									
	ORIG	DUP									
Cadmium	ND	ND	NA	NA		l	NA	NA	NA	20	
Chromium	19.6	17.8	NA	NA		I	NA	NA	10	20	
Lead	6.58	7.36	NA	NA		I	NA	NA	11	20	
Silver	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-06	61-01									
	MS	MSD	MS	MSD		MS	MSD				
Cadmium	44.6	44.4	50.0	50.0	ND	89	89	75-125	0	20	
Chromium	110	108	100	100	19.6	90	88	75-125	2	20	
Lead	236	235	250	250	6.58	92	91	75-125	0	20	

ND

77

77

75-125

0

20

Silver

19.2

19.3

25.0

25.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TCLP METALS EPA 1311/6010D

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU2					
Laboratory ID:	06-039-01					
Cadmium	ND	0.020	EPA 6010D	6-11-24	6-11-24	
Chromium	ND	0.020	EPA 6010D	6-11-24	6-11-24	
Lead	ND	0.20	EPA 6010D	6-11-24	6-11-24	
Silver	ND	0.040	EPA 6010D	6-11-24	6-11-24	

Client ID:	CSO DU3					
Laboratory ID:	06-039-02					
Cadmium	ND	0.020	EPA 6010D	6-11-24	6-11-24	
Chromium	ND	0.020	EPA 6010D	6-11-24	6-11-24	
Lead	ND	0.20	EPA 6010D	6-11-24	6-11-24	
Silver	ND	0.040	EPA 6010D	6-11-24	6-11-24	

TCLP METALS EPA 1311/6010D QUALITY CONTROL

Matrix: TCLP Extract Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0611TM1					
Cadmium	ND	0.020	EPA 6010D	6-11-24	6-11-24	
Chromium	ND	0.020	EPA 6010D	6-11-24	6-11-24	
Lead	ND	0.20	EPA 6010D	6-11-24	6-11-24	
Silver	ND	0.040	EPA 6010D	6-11-24	6-11-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-09	96-03									
	ORIG	DUP									
Cadmium	ND	ND	NA	NA		I	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		I	NA	NA	NA	20	
Lead	0.204	ND	NA	NA		I	NA	NA	NA	20	
Silver	ND	ND	NA	NA		I	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-09	96-03									
	MS	MSD	MS	MSD		MS	MSD				
Cadmium	2.07	2.08	2.00	2.00	ND	103	104	75-125	1	20	
Chromium	3.70	3.73	4.00	4.00	ND	93	93	75-125	1	20	

0.204

ND

93

89

94

90

75-125

75-125

Lead

Silver

9.54

0.893

9.63

0.900

10.0

1.00

10.0

1.00

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1

1

20

20

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
CSO DU2	06-039-01	10	6-5-24
CSO DU3	06-039-02	14	6-5-24

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE MULTI-INCREMENT SAMPLING

Client ID	Lab ID	% Moisture	Date Analyzed
CSO DU2	06-039-01	7	6-7-24
CSO DU3	06-039-02	11	6-7-24

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Am Test Inc. 13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Professional Analytical Services

June 28, 2024

David Baumeister

14648 NE 95th ST Redmond, WA 98052

Project: Onsite (Chem) Project Number: 2024-243 Project Manager: David Baumeister RE: Onsite (Chem)

Enclosed are the results of analyses for samples received by our laboratory on 6/10/2024. Please feel free to contact me with any questions or considerations regarding this report.

Sincerely,

Aavon YJ

Aaron Young President

Am Test Inc.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

OnSite Environmental Inc.

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: 2024-243

ANALYSIS REPORT

Professional Analytical Services

Date Received: 06/10/24 **Date Reported:** 06/28/24

All results reported on an as received basis.

Reported Samples

Lab ID	Sample	Matrix	Qualifiers	Date Sampled	Date Received
A24F0163-01	CSO DU2	Solid		05/31/2024	06/10/2024
A24F0163-02	CSO DU3	Solid		06/03/2024	06/10/2024

Am Test Inc.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

OnSite Environmental Inc.

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: 2024-243

ANALYSIS REPORT

Professional Analytical Services

Date Received: 06/10/24 **Date Reported:** 06/28/24

All results reported on an as received basis.

AMTEST Identification Number: A24F0163-01 Client Identification: CSO DU2 Sampling Date: 05/31/24 07:00

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Cyanide	ND	mg/kg wet		0.037	SM 4500CN-E_2011	EZ	06/17/2024

AMTEST Identification Number: A24F0163-02 Client Identification: CSO DU3 Sampling Date: 06/03/24 07:00

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Cyanide	0.235	mg/kg wet		0.029	SM 4500CN-E_2011	EZ	06/17/2024

Am Test Inc.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

OnSite Environmental Inc.

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: 2024-243

ANALYSIS REPORT

Professional Analytical Services

Date Received: 06/10/24 **Date Reported:** 06/28/24

All results reported on an as received basis.

Quality Control

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBF0094 - No Prep - WC Se	oil									
Blank (BBF0094-BLK1)				Pr	epared: 06/0	7/24 Analyze	ed: 06/17/24	1		
Cyanide	ND		0.005	mg/kg wet						
LCS (BBF0094-BS1)				Pr	epared: 06/0	7/24 Analyze	ed: 06/17/24	1		
Cyanide	0.054			mg/kg	0.05000		107	80-120		
Calibration Blank (BBF0094-CCB1)				Pr	epared: 06/0	7/24 Analyze	ed: 06/17/24	1		
Cyanide	0.0002			mg/kg wet						
Calibration Blank (BBF0094-CCB2)				Pr	epared: 06/0	7/24 Analyze	ed: 06/17/24	1		
Cyanide	-0.0009			mg/kg wet						
Calibration Check (BBF0094-CCV1)				Pr	epared: 06/0	7/24 Analyze	ed: 06/17/24	1		
Cyanide	0.104			mg/kg	0.1000		104	85-115		
Calibration Check (BBF0094-CCV2)				Pr	epared: 06/0	7/24 Analyze	ed: 06/17/24	1		
Cyanide	0.096			mg/kg	0.1000		96	85-115		
Duplicate (BBF0094-DUP1)		Source: A	24F0072-02	Pr	epared: 06/0	7/24 Analyze	ed: 06/17/24	1		
Cyanide	0.239		0.070	mg/kg dry		0.226			6	34
Matrix Spike (BBF0094-MS1)		Source: A	24F0072-02	Pr	epared: 06/0	7/24 Analyze	ed: 06/17/24	1		
Cyanide	0.913		0.100	mg/kg dry	1.246	0.226	55	45-155		

Notes and Definitions

Item	Definition
Dry	Sample results reported on a dry weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated.

			,
Dacito			Page 1 of 1
Environmental Inc.			
14648 NE 95th Street, Redmond, WA 98052 - (425) 883-3881			Laboratory Reference #: 06-039
Laboratory: AmTest Laboratories	Turnaround Request	ļuest	Project Manager: David Baumeister
Attention: Aaron Young	1 Day 2 Day	3 Day	email: dbaumeister@onsite-env.com
13600 NE 126th Pl Kirkland, WA 98034	Standard		Project Number: 2024-243
Phone Number: (425) 885-1664	Other: 1 Week		Project Name:
	Or Sid	Or Sconer it at all Passaula Pleas	Passuble Please David
Lab ID Sample Identification	Date Time Sampled Sampled	Matrix C	# of Cont. Requested Analyses
CSO DU2	5/31/24		Cyanide SM4500-CN
OL CSO DU3	6/3/24	S	1 Cyanide SM4500-CN
			HAWAII SAMPLES
			REGULATED DISPOSAL
			PROCEDURE
Relinquished by:	05E	0	1
Received by:	Antest	6	10/24 12:60
Relinquished by:			
Received by:			
Relinguished by:			
Received by:			

A24F0163

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Pelinquished	Signature							2 (SO DU3	1 (SO DU2	Lab ID Sample Identification	CALVIN ARCA/NICOLE GARAGANZA-TENGAN	KAMA KOBAYASHI	CSO DECOMMISSIONING - CESSPOOL	2024-243		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3381 • www.onsite-env.com	Environmental Inc.
Reviewed/Date						LEHUA ENVIRONMENTAL INC.	Company							43/24	5/31/24	Date Time Sampled Sampled	(other)	_	X	A2 Days	Check One)	Turnaround Request (In working days)	Chain
•					R.	ONMENTAI								t	S	Matrix			VD.	2 de la] 1 Day	est s)	in of
						INC.			-		en al anti-			114	14	Notes and	er of C	1999	ers			11	C
				_	5	6	D			-							IWTPH-HCID					Lat	Custody
	-				1	4	Date				_						PH-Gx		EPA 80	15		Laboratory Number:	to
				1	2	HC/								XX	XX	NWTE	H-Dx (XXXXXX	¢	tor	b
					K	=	10							X	X	Volati	es 8260	C				Y N	
					20	10:00A	Time										OCS + enated		s 82600	;		umi	
					20	DAM										EDB I	PA 801	1 (Wate	irs Only)		ber:	
9	Da]			C		6										olatiles					0	
Chromatograms with final report	Data Package:				,		Comments/Special Instructions		+					×	X	and the second second second	ow-leve 8270D/	And in case of the local division of the loc	and a state of the			5	
togra	lokag				2	K	ints/S		-					X	X	PCBs	8082A	and the second second					
ms w					/	•	pecia	Organochlorine Pesticides 8081B									0						
rith fir	Standard				Z		Inst									Organophosphorus Pesticides 8270D/SIM						80	
nal re	ard	1.														Chlorinated Acid Herbicides 8151A						ω	
port [ns							X	X	Total I	XXX		Cadmi Silver,		romium,		
1 1	Level III				1	3			-							Total I	ATCA N		Silver,	LCau			סר
actron														X	X	TCLP		Cadmi Silver,		nromiu	m, _		Page
ic Dat	Level				10	D										HEM (oil and						1
a Dell	<							Multi-incremental sample preparation Volatile and Non-Volatile							ation		of						
Electronic Data Deliverables (EDDs)					4			✓ </td <td></td> <td></td> <td></td> <td></td> <td></td>															
es (EL					27 W 1																		1
)Ds)					ç	2							_				_						
					1	N	1111									% Moi							

.*

Sample/Cooler Receipt and Acceptance Checklist

Client:			m/	
Client Project Name/Number: 2024-243		Initiated by		
OnSite Project Number: 06-039		Date Initiat	6/02/2	
1.0 Cooler Verification				
1.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A 1 2 3 4	
1.2 Were the custody seals intact?	Yes	No	1234	
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	N/A 1234	
1.4 Were the samples delivered on ice or blue ice?	res	No	N/A 1234	
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	N/A Temperature: 4	
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	N/A		
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx) OSE Pickup	Other
2.0 Chain of Custody Verification		gilainerianti comunera		
2.1 Was a Chain of Custody submitted with the samples?	Yes	No	1 2 3 4	
2.2 Was the COC legible and written in permanent ink?	res	No	1 2 3 4	
2.3 Have samples been relinquished and accepted by each custodian?	res	No	1 2 3 4	
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Kes	No	1 2 3 4	
2.5 Were all of the samples listed on the COC submitted?	Yes	No	1 2 3 4	
2.6 Were any of the samples submitted omitted from the COC?	Yes	No	1 2 3 4	
3.0 Sample Verification	Angel		20	
3.1 Were any sample containers broken or compromised?	Yes	No	1 2 3 4	
3.2 Were any sample labels missing or illegible?	Yes	N6)	1 2 3 4	
3.3 Have the correct containers been used for each analysis requested?	Yes	No	1 2 3 4	
3.4 Have the samples been correctly preserved?	Tes	No	1234	
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Yes	No	1234	1
3.6 Is there sufficient sample submitted to perform requested analyses?	Yes	No	1 2 3 4	
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No	1 2 3 4	
3.8 Was method 5035A used?	Yes	No	N/A 1 2 3 4	
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#	2	N/A 1234	
Explain any discrepancies:				

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls

June 18, 2024

Kama Kobayashi Lehua Environmental Inc. P.O. Box 1018 Kamuela, HI 96743

Re: Analytical Data for Project 2024-243-3 Laboratory Reference No. 2406-163

Dear Kama:

Enclosed are the analytical results and associated quality control data for samples submitted on June 13, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 18, 2024 Samples Submitted: June 13, 2024 Laboratory Reference: 2406-163 Project: 2024-243-3

Case Narrative

Samples were collected on June 11, 2024 and received by the laboratory on June 13, 2024. Samples were shipped in a cooler packed with blue ice and arrived at a temperature of $<6^{\circ}$ C. They were maintained at the laboratory at a temperature of 2° C to 6° C. A copy of the cooler receipt form has been included with this report.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

All samples were processed in the laboratory following the multi-increment sampling procedures as outlined in the HEER-TGM. Additional notes will be addressed in appropriate sections as warranted.

Volatiles EPA 8260D Analysis

The percent recovery for Bromomethane and 1,1,2-Trichloroethane is outside the control limits in the Spike Blank. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

The RPD for Chloroethane, 1,1,2-Trichloroethane, 1,4-Dichlorobenzene and 1,2-Dichlorobenzene is outside the control limits for the Spike Blank/Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

2

GASOLINE RANGE ORGANICS EPA 8015M

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-4					
Laboratory ID:	06-163-01					
Gasoline	ND	9.5	EPA 8015M	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	62-134				

3

GASOLINE RANGE ORGANICS EPA 8015M QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

						Date	Date)	
Analyte		Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0617S2							
Gasoline		ND	5.0	EPA	8015M	6-17-24	6-17-2	24	
Surrogate:	Pei	rcent Recovery	Control Limi	its					
Fluorobenzene		109	62-134						
				Source	Percer	t Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recove	ry Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-16	63-01							
	ORIG	DUP							
Gasoline	ND	ND	NA NA		NA	NA	NA	30	
Surrogate:									
Fluorobenzene					87 9	92 62-134			

DIESEL AND HEAVY OIL RANGE ORGANICS EPA 8015M

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CSO DU-4					
Laboratory ID:	06-163-01					
Diesel Range Organics	ND	83	EPA 8015M	6-17-24	6-18-24	U1
Residual Range Organics	540	53	EPA 8015M	6-17-24	6-18-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				

5

DIESEL AND HEAVY OIL RANGE ORGANICS EPA 8015M QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0617S1					
ND	25	EPA 8015M	6-17-24	6-17-24	
ND	50	EPA 8015M	6-17-24	6-17-24	
Percent Recovery	Control Limits				
88	50-150				
	MB0617S1 ND ND Percent Recovery	MB0617S1ND25ND50Percent RecoveryControl Limits	MB0617S1ND25EPA 8015MND50EPA 8015MPercent RecoveryControl Limits	Result PQL Method Prepared MB0617S1 -<	Result PQL Method Prepared Analyzed MB0617S1 -

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-18	33-02									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	40	
Residual Range	ND	ND	NA	NA		N	A	NA	NA	40	
Surrogate:											
o-Terphenyl						75	75	50-150			

VOLATILE ORGANICS EPA 8260D/SIM page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-4					
Laboratory ID:	06-163-01					
Dichlorodifluoromethane	ND	0.13	EPA 8260D	6-17-24	6-17-24	
Chloromethane	ND	0.48	EPA 8260D	6-17-24	6-17-24	
Vinyl Chloride (SIM)	ND	0.0048	EPA 8260D/SIM	6-17-24	6-17-24	
Bromomethane	ND	0.48	EPA 8260D	6-17-24	6-17-24	
Chloroethane	ND	0.48	EPA 8260D	6-17-24	6-17-24	
Trichlorofluoromethane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,1-Dichloroethene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Acetone	ND	0.95	EPA 8260D	6-17-24	6-17-24	
lodomethane	ND	0.95	EPA 8260D	6-17-24	6-17-24	
Carbon Disulfide	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Methylene Chloride	ND	0.48	EPA 8260D	6-17-24	6-17-24	
(trans) 1,2-Dichloroethene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Methyl t-Butyl Ether	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,1-Dichloroethane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Vinyl Acetate	ND	0.48	EPA 8260D	6-17-24	6-17-24	
2,2-Dichloropropane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
(cis) 1,2-Dichloroethene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
2-Butanone	ND	0.48	EPA 8260D	6-17-24	6-17-24	
Bromochloromethane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Chloroform (SIM)	ND	0.0048	EPA 8260D/SIM	6-17-24	6-17-24	
1,1,1-Trichloroethane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Carbon Tetrachloride	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,1-Dichloropropene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Benzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,2-Dichloroethane (SIM)	ND	0.0048	EPA 8260D/SIM	6-17-24	6-17-24	
Trichloroethene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,2-Dichloropropane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Dibromomethane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Bromodichloromethane (SIM)	ND	0.0048	EPA 8260D/SIM	6-17-24	6-17-24	

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-4					
Laboratory ID: 2-Chloroethyl Vinyl Ether	06-163-01 ND	0.48	EPA 8260D	6-17-24	6-17-24	
(cis) 1,3-Dichloropropene (SIM)	ND	0.48	EPA 8260D/SIM	6-17-24 6-17-24	6-17-24	
Methyl Isobutyl Ketone	ND	0.0048	EPA 8260D/SIM	6-17-24 6-17-24	6-17-24 6-17-24	
Toluene	ND	0.48	EPA 8260D	6-17-24	6-17-24	
(trans) 1,3-Dichloropropene (SIM)	ND	0.0048	EPA 8260D/SIM	6-17-24	6-17-24	
1,1,2-Trichloroethane (SIM)	ND	0.0095	EPA 8260D/SIM	6-17-24	6-17-24	
Tetrachloroethene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,3-Dichloropropane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
2-Hexanone	ND	0.48	EPA 8260D	6-17-24	6-17-24	
Dibromochloromethane (SIM)	ND	0.0048	EPA 8260D/SIM	6-17-24	6-17-24	
1,2-Dibromoethane (SIM)	ND	0.0048	EPA 8260D/SIM	6-17-24	6-17-24	
Chlorobenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,1,1,2-Tetrachloroethane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Ethylbenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
m,p-Xylene	ND	0.19	EPA 8260D	6-17-24	6-17-24	
o-Xylene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Styrene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Bromoform	ND	0.48	EPA 8260D	6-17-24	6-17-24	
lsopropylbenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
Bromobenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,1,2,2-Tetrachloroethane	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,2,3-Trichloropropane (SIM)	ND	0.0095	EPA 8260D/SIM	6-17-24	6-17-24	
n-Propylbenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
2-Chlorotoluene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
4-Chlorotoluene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,3,5-Trimethylbenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
tert-Butylbenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,2,4-Trimethylbenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
sec-Butylbenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,3-Dichlorobenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
p-Isopropyltoluene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,4-Dichlorobenzene (SIM)	ND	0.0095	EPA 8260D/SIM	6-17-24	6-17-24	
1,2-Dichlorobenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
n-Butylbenzene	ND	0.095	EPA 8260D	6-17-24	6-17-24	
1,2-Dibromo-3-chloropropane (SIM)		0.0095	EPA 8260D/SIM	6-17-24	6-17-24	
1,2,4-Trichlorobenzene	ND	0.095	EPA 8260D EPA 8260D/SIM	6-17-24 6 17 24	6-17-24	
Hexachlorobutadiene (SIM) Naphthalene	ND ND	0.0095 0.48		6-17-24 6 17 24	6-17-24 6 17 24	
1,2,3-Trichlorobenzene	ND	0.48	EPA 8260D EPA 8260D	6-17-24 6-17-24	6-17-24 6-17-24	
Surrogate:	Percent Recovery	Control Limits		0-17-24	0-17-24	
Dibromofluoromethane	91	69-124				
Toluene-d8	109	80-118				
4-Bromofluorobenzene	95	75-123				
	50	10120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

AnalyteResultPQLMethodPreparedMETHOD BLANKLaboratory ID:MB0617S2DichlorodifluoromethaneND0.070EPA 8260D6-17-24ChloromethaneND0.25EPA 8260D6-17-24Vinyl Chloride (SIM)ND0.0025EPA 8260D6-17-24BromomethaneND0.25EPA 8260D6-17-24ChloroethaneND0.25EPA 8260D6-17-24IrichlorofluoromethaneND0.25EPA 8260D6-17-24AcetoneND0.050EPA 8260D6-17-24I,1-DichloroetheneND0.050EPA 8260D6-17-24AcetoneND0.50EPA 8260D6-17-24IodomethaneND0.50EPA 8260D6-17-24IdomethaneND0.50EPA 8260D6-17-24IdomethaneND0.50EPA 8260D6-17-24IdomethaneND0.050EPA 8260D6-17-24IdomethaneND0.050EPA 8260D6-17-24Methylene ChlorideND0.050EPA 8260D6-17-24Methylene ChlorideND0.050EPA 8260D6-17-24Methyl t-Butyl EtherND0.050EPA 8260D6-17-24Methyl t-Butyl EtherND0.050EPA 8260D6-17-24Methyl t-Butyl EtherND0.050EPA 8260D6-17-24Methyl t-Butyl EtherND0.050EPA 8260D6-17-24	Analyzed	Flags
Laboratory ID: MB0617S2 Dichlorodifluoromethane ND 0.070 EPA 8260D 6-17-24 Chloromethane ND 0.25 EPA 8260D 6-17-24 Vinyl Chloride (SIM) ND 0.0025 EPA 8260D/SIM 6-17-24 Bromomethane ND 0.25 EPA 8260D 6-17-24 Chloroethane ND 0.25 EPA 8260D 6-17-24 Chloroethane ND 0.25 EPA 8260D 6-17-24 Chloroethane ND 0.25 EPA 8260D 6-17-24 Trichlorofluoromethane ND 0.050 EPA 8260D 6-17-24 1,1-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Acetone ND 0.50 EPA 8260D 6-17-24 Iodomethane ND 0.50 EPA 8260D 6-17-24 Carbon Disulfide ND 0.050 EPA 8260D 6-17-24 Methylene Chloride ND 0.25 EPA 8260D 6-17-24 Methylene Chloroethene <		
Dichlorodifluoromethane ND 0.070 EPA 8260D 6-17-24 Chloromethane ND 0.25 EPA 8260D 6-17-24 Vinyl Chloride (SIM) ND 0.0025 EPA 8260D/SIM 6-17-24 Bromomethane ND 0.25 EPA 8260D 6-17-24 Bromomethane ND 0.25 EPA 8260D 6-17-24 Chloroethane ND 0.25 EPA 8260D 6-17-24 Chloroethane ND 0.25 EPA 8260D 6-17-24 Trichlorofluoromethane ND 0.050 EPA 8260D 6-17-24 1,1-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Acetone ND 0.50 EPA 8260D 6-17-24 Iodomethane ND 0.50 EPA 8260D 6-17-24 Carbon Disulfide ND 0.050 EPA 8260D 6-17-24 Methylene Chloride ND 0.25 EPA 8260D 6-17-24 Methylene Chloride ND 0.050 EPA 8260D 6-17-24<		
Chloromethane ND 0.25 EPA 8260D 6-17-24 Vinyl Chloride (SIM) ND 0.0025 EPA 8260D/SIM 6-17-24 Bromomethane ND 0.25 EPA 8260D 6-17-24 Chloroethane ND 0.25 EPA 8260D 6-17-24 Chloroethane ND 0.25 EPA 8260D 6-17-24 Trichlorofluoromethane ND 0.050 EPA 8260D 6-17-24 1,1-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Acetone ND 0.50 EPA 8260D 6-17-24 Iodomethane ND 0.50 EPA 8260D 6-17-24 Iodomethane ND 0.50 EPA 8260D 6-17-24 Carbon Disulfide ND 0.050 EPA 8260D 6-17-24 Methylene Chloride ND 0.25 EPA 8260D 6-17-24 (trans) 1,2-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17		
Vinyl Chloride (SIM) ND 0.0025 EPA 8260D/SIM 6-17-24 Bromomethane ND 0.25 EPA 8260D 6-17-24 Chloroethane ND 0.25 EPA 8260D 6-17-24 Trichlorofluoromethane ND 0.050 EPA 8260D 6-17-24 1,1-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Acetone ND 0.050 EPA 8260D 6-17-24 Iodomethane ND 0.50 EPA 8260D 6-17-24 Carbon Disulfide ND 0.50 EPA 8260D 6-17-24 Methylene Chloride ND 0.050 EPA 8260D 6-17-24 (trans) 1,2-Dichloroethene ND 0.25 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
Bromomethane ND 0.25 EPA 8260D 6-17-24 Chloroethane ND 0.25 EPA 8260D 6-17-24 Trichlorofluoromethane ND 0.050 EPA 8260D 6-17-24 1,1-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Acetone ND 0.050 EPA 8260D 6-17-24 Iodomethane ND 0.050 EPA 8260D 6-17-24 Acetone ND 0.50 EPA 8260D 6-17-24 Iodomethane ND 0.50 EPA 8260D 6-17-24 Carbon Disulfide ND 0.050 EPA 8260D 6-17-24 Methylene Chloride ND 0.050 EPA 8260D 6-17-24 (trans) 1,2-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
Chloroethane ND 0.25 EPA 8260D 6-17-24 Trichlorofluoromethane ND 0.050 EPA 8260D 6-17-24 1,1-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Acetone ND 0.050 EPA 8260D 6-17-24 Iodomethane ND 0.50 EPA 8260D 6-17-24 Iodomethane ND 0.50 EPA 8260D 6-17-24 Carbon Disulfide ND 0.50 EPA 8260D 6-17-24 Methylene Chloride ND 0.050 EPA 8260D 6-17-24 (trans) 1,2-Dichloroethene ND 0.25 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
Trichlorofluoromethane ND 0.050 EPA 8260D 6-17-24 1,1-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Acetone ND 0.50 EPA 8260D 6-17-24 Iodomethane ND 0.50 EPA 8260D 6-17-24 Carbon Disulfide ND 0.50 EPA 8260D 6-17-24 Methylene Chloride ND 0.050 EPA 8260D 6-17-24 (trans) 1,2-Dichloroethene ND 0.25 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
1,1-DichloroetheneND0.050EPA 8260D6-17-24AcetoneND0.50EPA 8260D6-17-24IodomethaneND0.50EPA 8260D6-17-24Carbon DisulfideND0.050EPA 8260D6-17-24Methylene ChlorideND0.25EPA 8260D6-17-24(trans) 1,2-DichloroetheneND0.050EPA 8260D6-17-24Methyl t-Butyl EtherND0.050EPA 8260D6-17-24	6-17-24	
Acetone ND 0.50 EPA 8260D 6-17-24 lodomethane ND 0.50 EPA 8260D 6-17-24 Carbon Disulfide ND 0.050 EPA 8260D 6-17-24 Methylene Chloride ND 0.25 EPA 8260D 6-17-24 (trans) 1,2-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
Iodomethane ND 0.50 EPA 8260D 6-17-24 Carbon Disulfide ND 0.050 EPA 8260D 6-17-24 Methylene Chloride ND 0.25 EPA 8260D 6-17-24 (trans) 1,2-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
Carbon Disulfide ND 0.050 EPA 8260D 6-17-24 Methylene Chloride ND 0.25 EPA 8260D 6-17-24 (trans) 1,2-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
Methylene Chloride ND 0.25 EPA 8260D 6-17-24 (trans) 1,2-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
(trans) 1,2-Dichloroethene ND 0.050 EPA 8260D 6-17-24 Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
Methyl t-Butyl Ether ND 0.050 EPA 8260D 6-17-24	6-17-24	
	6-17-24	
	6-17-24	
1,1-Dichloroethane ND 0.050 EPA 8260D 6-17-24	6-17-24	
Vinyl Acetate ND 0.25 EPA 8260D 6-17-24	6-17-24	
2,2-Dichloropropane ND 0.050 EPA 8260D 6-17-24	6-17-24	
(cis) 1,2-Dichloroethene ND 0.050 EPA 8260D 6-17-24	6-17-24	
2-Butanone ND 0.25 EPA 8260D 6-17-24	6-17-24	
Bromochloromethane ND 0.050 EPA 8260D 6-17-24	6-17-24	
Chloroform (SIM) ND 0.0025 EPA 8260D/SIM 6-17-24	6-17-24	
1,1,1-Trichloroethane ND 0.050 EPA 8260D 6-17-24	6-17-24	
Carbon Tetrachloride ND 0.050 EPA 8260D 6-17-24	6-17-24	
1,1-Dichloropropene ND 0.050 EPA 8260D 6-17-24	6-17-24	
Benzene ND 0.050 EPA 8260D 6-17-24	6-17-24	
1,2-Dichloroethane (SIM) ND 0.0025 EPA 8260D/SIM 6-17-24	6-17-24	
Trichloroethene ND 0.050 EPA 8260D 6-17-24	6-17-24	
1,2-Dichloropropane ND 0.050 EPA 8260D 6-17-24	6-17-24	
Dibromomethane ND 0.050 EPA 8260D 6-17-24	6-17-24	
Bromodichloromethane (SIM) ND 0.0025 EPA 8260D/SIM 6-17-24		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

A		501		Date	Date	-
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK Laboratory ID:	MB0617S2					
2-Chloroethyl Vinyl Ether	ND	0.25	EPA 8260D	6-17-24	6-17-24	
(cis) 1,3-Dichloropropene (SIM)	ND	0.0025	EPA 8260D/SIM	6-17-24	6-17-24	
Methyl Isobutyl Ketone	ND	0.25	EPA 8260D	6-17-24	6-17-24	
Toluene	ND	0.25	EPA 8260D	6-17-24	6-17-24	
(trans) 1,3-Dichloropropene (SIM)	ND	0.0025	EPA 8260D/SIM	6-17-24	6-17-24	
1,1,2-Trichloroethane (SIM)	ND	0.0050	EPA 8260D/SIM	6-17-24	6-17-24	
Tetrachloroethene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
1,3-Dichloropropane	ND	0.050	EPA 8260D	6-17-24	6-17-24	
2-Hexanone	ND	0.25	EPA 8260D	6-17-24	6-17-24	
Dibromochloromethane (SIM)	ND	0.0025	EPA 8260D/SIM	6-17-24	6-17-24	
1,2-Dibromoethane (SIM)	ND	0.0025	EPA 8260D/SIM	6-17-24	6-17-24	
Chlorobenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
1,1,1,2-Tetrachloroethane	ND	0.050	EPA 8260D	6-17-24	6-17-24	
Ethylbenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
m,p-Xylene	ND	0.10	EPA 8260D	6-17-24	6-17-24	
o-Xylene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
Styrene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
Bromoform	ND	0.25	EPA 8260D	6-17-24	6-17-24	
lsopropylbenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
Bromobenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
1,1,2,2-Tetrachloroethane	ND	0.050	EPA 8260D	6-17-24	6-17-24	
1,2,3-Trichloropropane (SIM)	ND	0.0050	EPA 8260D/SIM	6-17-24	6-17-24	
n-Propylbenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
2-Chlorotoluene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
4-Chlorotoluene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
1,3,5-Trimethylbenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
tert-Butylbenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
1,2,4-Trimethylbenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
sec-Butylbenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
1,3-Dichlorobenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
p-Isopropyltoluene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
1,4-Dichlorobenzene (SIM)	ND	0.0050	EPA 8260D/SIM	6-17-24	6-17-24	
1,2-Dichlorobenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
n-Butylbenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
1,2-Dibromo-3-chloropropane (SIM)	ND	0.0050	EPA 8260D/SIM	6-17-24	6-17-24	
1,2,4-Trichlorobenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
Hexachlorobutadiene (SIM)	ND	0.0050	EPA 8260D/SIM	6-17-24	6-17-24	
Naphthalene	ND	0.25	EPA 8260D	6-17-24	6-17-24	
1,2,3-Trichlorobenzene	ND	0.050	EPA 8260D	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	69-124				
Toluene-d8	110	80-118				
4-Bromofluorobenzene	115	75-123				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

Analyte Result Spike Level Recovery Limits RPD Limit Flags SPIKE BLANKS	Units: mg/kg				Per	cent	Recovery		RPD	
SPIKE BLANKS Laboratory ID: SBD / SB SBD SB SBD SB SBD SB SBD Dichlorodifluoromethane 0.0385 0.0329 0.0500 0.0500 77 66 24-162 16 24 Chioromethane 0.0465 0.0441 0.0500 0.0500 100 91 52-141 10 20 Bromomethane 0.0617 0.0492 0.0500 0.0500 123 98 65-142 11 18 Chioroethane 0.0617 0.0492 0.0500 0.0500 123 98 65-142 11 18 1,1-Dichloroethene 0.0697 0.0590 0.0500 125 114 37-138 10 27 Carbon Disulfide 0.0492 0.0500 0.0500 198 92 36-133 6 31 I_1-Dichloroethane 0.0494 0.0492 0.0500 1050 114 37-138 10 27 Kethylee Chioride <td< th=""><th>Analyte</th><th>Res</th><th>ult</th><th>Spike Level</th><th></th><th></th><th>-</th><th>RPD</th><th></th><th>Flags</th></td<>	Analyte	Res	ult	Spike Level			-	RPD		Flags
SB SB SB SB SB SB SB SB Dichlorodiffuoromethane 0.0385 0.0329 0.0500 0.0500 77 66 24-162 16 24 Chloromethane 0.0465 0.0441 0.0500 0.0500 100 91 52-141 10 20 Bromomethane 0.0607 0.0492 0.0500 0.0500 1162 144 37-145 12 23 I Chloromethane 0.0617 0.0492 0.0500 0.0500 116 104 65-142 11 18 1,1-Dichloroethene 0.0604 0.0592 0.0500 0.0500 121 118 74-133 2 16 Acetone 0.0411 0.0500 0.0500 98 92 36-133 6 31 Idomethane 0.0491 0.0461 0.0500 0.0500 119 118 74-131 1 15 Methylewidy Ether 0.0595 0.0591 0.05	SPIKE BLANKS									
Dichlorodifluoromethane 0.0385 0.0329 0.0500 0.0500 77 66 24-162 16 24 Chloromethane 0.0465 0.0441 0.0500 0.0500 93 88 41-143 5 22 Vinyl Chloride 0.0499 0.0453 0.0500 0.0500 100 91 52-141 10 20 Bromomethane 0.0617 0.0492 0.0500 0.0500 123 98 54-148 23 19 L Chloroethane 0.0617 0.0492 0.0500 0.0500 118 74-145 12 23 1 Acetone 0.0413 0.0510 0.0500 0.8500 121 118 74-133 2 16 Acetone 0.0491 0.0461 0.0500 0.500 125 114 37-138 10 27 Methylene Chloride 0.0484 0.0492 0.0500 0.500 119 118 74-131 1 15 <td< td=""><td>Laboratory ID:</td><td>SB06</td><td>17S1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Laboratory ID:	SB06	17S1							
Chloromethane 0.0465 0.0441 0.0500 0.0500 93 88 41-143 5 22 Vinyl Chloride 0.0499 0.0453 0.0500 0.0500 100 91 52-141 10 20 Bromomethane 0.0617 0.0492 0.0500 0.0500 116 104 65-142 11 18 Trichlorofluoromethane 0.0644 0.0592 0.0500 0.0500 121 118 74-133 2 16 1,1-Dichloroethene 0.0644 0.0592 0.0500 0.0500 83 63 50-159 28 38 Iodomethane 0.0441 0.0500 0.0500 121 118 74-133 10 27 Methylene Chloride 0.0454 0.0500 0.0500 114 37-138 10 27 Methylene Chloride 0.0454 0.0500 0.0500 118 120 74-131 1 15 I,1-Dichloroethane 0.0555 0.0500 0.		SB	SBD	SB SBD	SB	SBD				
Vinyl Chloride 0.0499 0.0453 0.0500 0.0500 100 91 52-141 10 20 Bromomethane 0.0608 0.0720 0.0500 0.0500 162 144 37.145 12 23 I Chloroethane 0.0617 0.0492 0.0500 0.0500 116 104 65.142 11 18 1,1-Dichloroethane 0.0641 0.0500 0.0500 125 114 37.138 10 27 Acetone 0.0491 0.0461 0.0500 0.0500 125 114 37.138 10 27 Methylene Chloride 0.0444 0.0492 0.0500 0.0500 115 114 37.138 10 27 Methylene Chloride 0.0444 0.0492 0.0500 0.0500 119 118 74.131 1 15 (trans) 1,2-Dichloroethane 0.0522 0.0500 0.0500 110 28 58.146 14 21 2,2-Dichloroethane	Dichlorodifluoromethane	0.0385	0.0329	0.0500 0.0500	77	66	24-162	16	24	
Bromomethane 0.0808 0.0720 0.0500 0.0500 162 144 37.145 12 23 I Chloroethane 0.0617 0.0492 0.0500 0.0500 123 98 54.148 23 19 L Trichloroethane 0.0604 0.0578 0.0500 0.0500 121 118 74.133 2 16 Acetone 0.0413 0.0313 0.0500 0.0500 98 92 36.133 6 31 Carbon Disulfide 0.0625 0.0568 0.0500 0.0500 125 114 37.138 10 27 Methylene Chloride 0.0481 0.0492 0.0500 0.0500 119 118 74.131 1 15 (trans) 1.2-Dichloroethane 0.0592 0.0500 0.0500 119 118 74.130 2 15 1.1-Dichloroethane 0.0526 0.0500 0.0500 125 135 74.130 2 15 (cis)	Chloromethane	0.0465	0.0441	0.0500 0.0500	93	88	41-143	5	22	
Chloroethane 0.0617 0.0492 0.0500 0.0500 123 98 54.148 23 19 L Trichlorofluoromethane 0.0578 0.0518 0.0500 0.0500 116 104 65.142 11 18 1,1-Dichloroethene 0.0604 0.0592 0.0500 0.0500 83 50.159 28 38 Carbon 0.0413 0.0313 0.0500 0.0500 98 92 36.133 6 31 Carbon Disulfide 0.0425 0.0560 0.0500 97 98 60-135 2 23 (trans) 1,2-Dichloroethene 0.0592 0.0500 0.0500 119 118 74-131 1 15 1,1-Dichloroethane 0.0592 0.0600 0.0500 111 98 76-129 3 15 1,1-Dichloroethane 0.0510 0.0500 0.0500 125 135 74-137 8 16 (cis) 1,2-Dichloroethane 0.0631 0.0626	Vinyl Chloride	0.0499	0.0453	0.0500 0.0500	100	91	52-141	10	20	
Trichlorofluoromethane 0.0578 0.0518 0.0500 0.0500 116 104 65-142 11 18 1,1-Dichloroethene 0.0604 0.0592 0.0500 0.0500 121 118 74-133 2 16 Acetone 0.0413 0.0513 0.0500 0.0500 83 63 50-159 28 38 lodomethane 0.0491 0.0461 0.0500 0.0500 92 36-133 6 31 Carbon Disulfide 0.0484 0.0492 0.0500 0.0500 119 118 74-131 1 15 Methyl t-Butyl Ether 0.0502 0.0500 0.0500 119 118 74-131 2 15 1,1-Dichloroethane 0.0592 0.0600 0.0500 1125 135 74-137 8 16 (cis) 1,2-Dichloroethane 0.0626 0.0570 0.500 126 125 71-136 1 15 2,2-Dichloropthane 0.0631 0.0626	Bromomethane	0.0808	0.0720	0.0500 0.0500	162	144	37-145	12	23	I
1,1-Dichloroethene0.06040.05920.05000.050012111874-133216Acetone0.04130.03130.05000.0500836350-1592838Iodomethane0.04910.04610.05000.0500989236-133631Carbon Disulfide0.06250.05680.05000.95012511437-1381027Methylene Chloride0.04840.04920.05000.050011911874-131115Methyl Ebtyl Ether0.05950.05910.05000.05001019876-1293151,1-Dichloroethane0.05920.06020.05000.050011812074-130215Vinyl Acetate0.05100.04450.05000.050012513574-137816(cis) 1,2-Dichloroethane0.06260.05000.050012513574-137816(cis) 1,2-Dichloroethane0.06210.05000.050012513574-137816(cis) 1,2-Dichloroethane0.06310.06260.050012513574-137816(cis) 1,2-Dichloroethane0.04530.04450.05000.050011511575-1280151,1-Tirchloroethane0.05840.05870.050011511575-1280151,1,1-Tirchloroethane0.05840.05870.0500	Chloroethane	0.0617	0.0492	0.0500 0.0500	123	98	54-148	23	19	L
Acetone0.04130.03130.05000.0500836350-1592838lodomethane0.04910.04610.05000.0500989236-133631Carbon Disulfide0.06250.05680.05000.050012511437-1381027Methylene Chloride0.04920.05000.0500979860-135223(trans) 1,2-Dichloroethene0.05940.04920.05000.050011874-131115Methyl Ether0.05040.04890.05000.050011874-1302151,1-Dichloroethane0.05920.06020.05001028958-14614212,2-Dichloropapae0.06260.06750.050012513574-137816(cis) 1,2-Dichloroethane0.04330.04450.05000.050012612571-1361152-Butanone0.04330.04450.05000.050011511575-1280151,1-Tichloroethane0.05340.05170.05000.050011611573-127115Carbon Tetrachloride0.05140.05190.05000.050011611573-127115Chloroform0.05340.05390.050011611573-127115Lipchloroethane0.05390.05000.050011611573-1271 <td< td=""><td>Trichlorofluoromethane</td><td>0.0578</td><td>0.0518</td><td>0.0500 0.0500</td><td>116</td><td>104</td><td>65-142</td><td>11</td><td>18</td><td></td></td<>	Trichlorofluoromethane	0.0578	0.0518	0.0500 0.0500	116	104	65-142	11	18	
Iodomethane0.04910.04610.05000.0500989236-133631Carbon Disulfide0.06250.05680.05000.050012511437-1381027Methylene Chloride0.04840.04920.05000.0500979860-135223(trans) 1,2-Dichloroethene0.05950.05910.05000.050011911874-131115Methyl t-Butyl Ether0.05020.06020.05000.05001019876-1293151,1-Dichloroethane0.05220.06020.05000.05001028958-14614212,2-Dichloroptopane0.06260.06750.05000.050012513574-137816(cis) 1,2-Dichloroethene0.06310.06260.05000.050012612571-1361152-Butanone0.04010.03740.05000.050011511575-1280151,1-1richloroethane0.05810.05770.05000.050011511573-127115Carbon Tetrachloride0.05990.05990.050011611573-1271151,1-Dichloroethane0.05990.05900.050011611573-1271151,1-Dichloroethane0.05990.05900.050011611573-1271151,2-Dichloroethane0.05990.0500	1,1-Dichloroethene	0.0604	0.0592	0.0500 0.0500	121	118	74-133	2	16	
Carbon Disulfide0.06250.05680.05000.050012511437-1381027Methylene Chloride0.04840.04920.05000.0500979860-135223(trans) 1,2-Dichloroethene0.05950.05910.05000.050011911874-131115Methyl t-Butyl Ether0.05020.06020.05000.05001019876-1293151,1-Dichloroethane0.05920.06020.05000.05001028958-14614212,2-Dichloropropane0.06260.06750.05000.050012513574-137816(cis) 1,2-Dichloroethene0.0430.04450.05000.050012612571-1361152-Butanone0.0430.04450.05000.0500918978-128215Chloroftrm0.05750.05000.050011511575-1280151,1,1-Trichloroethane0.05840.05070.050011611573-127115Carbon Tetrachloride0.05110.05190.05001009870-1332151,1-Dichloroethane0.05840.05000.050011611573-127115Benzene0.05990.05880.05000.050011611573-1321151,2-Dichloroethane0.05440.05000.0500110<	Acetone	0.0413	0.0313	0.0500 0.0500	83	63	50-159	28	38	
Methylene Chloride 0.0484 0.0492 0.0500 0.0500 97 98 60-135 2 23 (trans) 1,2-Dichloroethene 0.0595 0.0591 0.0500 0.0500 119 118 74-131 1 15 Methyl t-Butyl Ether 0.0502 0.0602 0.0500 0.0500 101 98 76-129 3 15 1,1-Dichloroethane 0.0592 0.0602 0.0500 0.0500 102 89 58-146 14 21 2,2-Dichloroethene 0.0626 0.0675 0.0500 0.0500 126 125 71-136 1 15 2-Butanone 0.0411 0.0374 0.0500 0.0500 126 125 71-136 1 15 2-Butanone 0.0431 0.0435 0.0445 0.0500 126 125 71-136 1 15 2-Butanone 0.0575 0.0500 0.0500 117 117 73-128 1 15 2-Bromochloromet	lodomethane	0.0491	0.0461	0.0500 0.0500	98	92	36-133	6	31	
(trans) 1,2-Dichloroethene0.05950.05910.05000.050011911874-131115Methyl t-Butyl Ether0.05040.04890.05000.05001019876-1293151,1-Dichloroethane0.05920.06020.05000.050011812074-130215Vinyl Acetate0.05100.04450.05000.05001028958-14614212,2-Dichloropropane0.06260.06750.05000.050012513574-137816(cis) 1,2-Dichloroethene0.06310.06260.05000.050012612571-1361152-Butanone0.04010.03740.05000.0500807558-144732Bromochloromethane0.04530.04450.05000.0500918978-128215Chloroform0.05750.05750.05000.050011511575-1280151,1-Irichloroethane0.05840.05970.05000.050010210469-1342151,1-Dichloropropene0.05800.05770.05000.050011611573-127115Benzene0.05990.05980.05000.05001109870-1332151,2-Dichloroethane0.05990.05900.050011110880-1303151,2-Dichloroethane0.0599 <td>Carbon Disulfide</td> <td>0.0625</td> <td>0.0568</td> <td>0.0500 0.0500</td> <td>125</td> <td>114</td> <td>37-138</td> <td>10</td> <td>27</td> <td></td>	Carbon Disulfide	0.0625	0.0568	0.0500 0.0500	125	114	37-138	10	27	
Methyl t-Butyl Ether0.05040.04890.05000.05001019876-1293151,1-Dichloroethane0.05920.06020.05000.050011812074-130215Vinyl Acetate0.05100.04450.05000.05001028958-14614212,2-Dichloropropane0.06260.06750.05000.050012513574-137816(cis) 1,2-Dichloroethene0.06310.06260.05000.050012612571-1361152-Butanone0.04010.03740.05000.0500807558-144732Bromochloromethane0.04530.04450.05000.050011511575-1280151,1,1-Trichloroethane0.05840.05870.05000.050011711773-129115Carbon Tetrachloride0.05110.05190.05000.050011611573-127115Benzene0.05800.05770.05000.050011611573-1271151,2-Dichloroethane0.04990.04910.05000.05001109870-1332151,2-Dichloroethane0.05540.05390.05001109870-1332151,2-Dichloroethane0.04990.04910.05000.05001109870-133215 <trr<tr>1,2-Dichloroethane0.</trr<tr>	Methylene Chloride	0.0484	0.0492	0.0500 0.0500	97	98	60-135	2	23	
1,1-Dichloroethane0.05920.06020.05000.050011812074-130215Vinyl Acetate0.05100.04450.05000.05001028958-14614212,2-Dichloropropane0.06260.06750.05000.050012513574-137816(cis) 1,2-Dichloroethene0.06310.06260.05000.050012612571-1361152-Butanone0.04010.03740.05000.0500807558-144732Bromochloromethane0.04530.04450.05000.0500918978-128215Chloroform0.05750.05750.05000.050011511575-1280151,1,1-Trichloroethane0.05840.05870.05000.050011711773-129115Carbon Tetrachloride0.05110.05190.05000.050011611573-127115Benzene0.05990.05980.05000.050011611573-1271151,2-Dichloroethane0.05540.05390.05000.05001109870-1332151,2-Dichloropropane0.06000.06160.05000.050011110880-1303151,2-Dichloropropane0.06280.05000.050012012378-131316Dibromomethane0.05830.	(trans) 1,2-Dichloroethene	0.0595	0.0591	0.0500 0.0500	119	118	74-131	1	15	
Vinyl Acetate0.05100.04450.05000.05001028958-14614212,2-Dichloropropane0.06260.06750.05000.050012513574-137816(cis) 1,2-Dichloroethene0.06310.06260.05000.050012612571-1361152-Butanone0.04010.03740.05000.0500807558-144732Bromochloromethane0.04530.04450.05000.0500918978-128215Chloroform0.05750.05750.05000.050011511575-1280151,1,1-Trichloroethane0.05840.05870.05000.050011711773-129115Carbon Tetrachloride0.05110.05970.05000.050011611573-127115Benzene0.05990.05980.05000.050012012075-1260151,2-Dichloroethane0.05540.05390.05000.05001109870-1332151,2-Dichloropropane0.06000.06160.05000.05001109872-136428Bromodichloromethane0.04590.04430.05000.050011110880-1303151,2-Dichloropropane0.06080.05000.050012012378-131316Dibromomethane0.05830	Methyl t-Butyl Ether	0.0504	0.0489	0.0500 0.0500	101	98	76-129	3	15	
2.2-Dichloropropane0.06260.06750.05000.050012513574-137816(cis) 1,2-Dichloroethene0.06310.06260.05000.050012612571-1361152-Butanone0.04010.03740.05000.0500807558-144732Bromochloromethane0.04530.04450.05000.0500918978-128215Chloroform0.05750.05750.05000.050011511575-1280151,1,1-Trichloroethane0.05840.05870.05000.050011711773-129115Carbon Tetrachloride0.05110.05190.05000.050010210469-1342151,1-Dichloropropene0.05990.05980.05000.050011611573-127115Benzene0.05990.05990.05000.05001009870-1332151,2-Dichloropropane0.06000.06160.05000.050011110880-1303151,2-Dichloropropane0.05830.05000.050012012378-131316Dibromomethane0.04590.04430.05000.050011711480-130315(cis) 1,3-Dichloropropene0.05830.05000.050011711480-132417Methyl Isobutyl Ketone0.0417	1,1-Dichloroethane	0.0592	0.0602	0.0500 0.0500	118	120	74-130	2	15	
(cis) 1,2-Dichloroethene0.06310.06260.05000.050012612571-1361152-Butanone0.04010.03740.05000.0500807558-144732Bromochloromethane0.04530.04450.05000.0500918978-128215Chloroform0.05750.05750.05000.050011511575-1280151,1,1-Trichloroethane0.05840.05870.05000.050011711773-129115Carbon Tetrachloride0.05110.05190.05000.050011611573-127115Benzene0.05990.05980.05000.050012012075-1260151,2-Dichloroethane0.05440.05390.05000.05001109870-1332151,2-Dichloropropane0.06000.06160.05000.050011110880-1303151,2-Dichloropropane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050011711480-132417Methyl Isobutyl Ketone0.04170.04000.05000.050012612180-132417Methyl Isobuty	Vinyl Acetate	0.0510	0.0445	0.0500 0.0500	102	89	58-146	14	21	
2-Butanone0.04010.03740.05000.0500807558-144732Bromochloromethane0.04530.04450.05000.0500918978-128215Chloroform0.05750.05750.05000.050011511575-1280151,1,1-Trichloroethane0.05840.05190.05000.050011711773-129115Carbon Tetrachloride0.05110.05190.05000.050010210469-1342151,1-Dichloropropene0.05800.05770.05000.050011611573-127115Benzene0.05990.05980.05000.050012012075-1260151,2-Dichloroethane0.04990.04910.05000.05001109870-1332151,2-Dichloroptopane0.06000.06160.05000.050011110880-1303151,2-Dichloroptopane0.06000.06160.05000.050012012378-131316Dibromomethane0.05830.05680.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.050012612180-132417Iotene0.05	2,2-Dichloropropane	0.0626	0.0675	0.0500 0.0500	125	135	74-137	8	16	
Bromochloromethane0.04530.044530.044550.05000.0500918978-128215Chloroform0.05750.05750.05000.050011511575-1280151,1,1-Trichloroethane0.05840.05870.05000.050011711773-129115Carbon Tetrachloride0.05110.05190.05000.050010210469-1342151,1-Dichloropropene0.05800.05770.05000.050011611573-127115Benzene0.05990.05980.05000.050012075-1260151,2-Dichloroethane0.04990.04910.05000.05001009870-1332151,2-Dichloroptopane0.06000.06160.05000.050011110880-1303151,2-Dichloroptopane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317	(cis) 1,2-Dichloroethene	0.0631	0.0626	0.0500 0.0500	126	125	71-136	1	15	
Chloroform0.05750.05750.05000.050011511575-1280151,1,1-Trichloroethane0.05840.05870.05000.050011711773-129115Carbon Tetrachloride0.05110.05190.05000.050010210469-1342151,1-Dichloropropene0.05800.05770.05000.050011611573-127115Benzene0.05990.05980.05000.050012012075-1260151,2-Dichloroethane0.04990.04910.05000.050011110880-1303151,2-Dichloroptopane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.050012612180-132417Toluene0.05800.06000.05000.050012612180-132422Toluene0.05800.06000.05000.050012612180-132417	2-Butanone	0.0401	0.0374	0.0500 0.0500	80	75	58-144	7	32	
1,1,1-Trichloroethane0.05840.05870.05000.050011711773-129115Carbon Tetrachloride0.05110.05190.05000.050010210469-1342151,1-Dichloropropene0.05800.05770.05000.050011611573-127115Benzene0.05990.05980.05000.050012012075-1260151,2-Dichloroethane0.04990.04910.05000.050011110880-1303151,2-Dichloropropane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132428Methyl Isobutyl Ketone0.04170.04000.05000.050011612078-124317	Bromochloromethane	0.0453	0.0445	0.0500 0.0500	91	89	78-128	2	15	
Carbon Tetrachloride0.05110.05190.05000.050010210469-1342151,1-Dichloropropene0.05800.05770.05000.050011611573-127115Benzene0.05990.05980.05000.050012012075-1260151,2-Dichloroethane0.04990.04910.05000.05001009870-133215Trichloroethene0.05540.05390.05000.050011110880-1303151,2-Dichloropropane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.050011711480-129315(cis) 1,3-Dichloropropane0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.050011612078-124317	Chloroform	0.0575	0.0575	0.0500 0.0500	115	115	75-128	0	15	
1,1-Dichloropropene0.05800.05770.05000.050011611573-127115Benzene0.05990.05980.05000.050012012075-1260151,2-Dichloroethane0.04990.04910.05000.05001009870-133215Trichloroethene0.05540.05390.05000.050011110880-1303151,2-Dichloropropane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.0500928972-136428Bromodichloromethane0.05830.05080.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317	1,1,1-Trichloroethane	0.0584	0.0587	0.0500 0.0500	117	117	73-129	1	15	
Benzene0.05990.05980.05000.050012012075-1260151,2-Dichloroethane0.04990.04910.05000.05001009870-133215Trichloroethene0.05540.05390.05000.050011110880-1303151,2-Dichloropropane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.0500928972-136428Bromodichloromethane0.05830.05680.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317	Carbon Tetrachloride	0.0511	0.0519	0.0500 0.0500	102	104	69-134	2	15	
1,2-Dichloroethane0.04990.04910.05000.05001009870-133215Trichloroethene0.05540.05390.05000.050011110880-1303151,2-Dichloropropane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.0500928972-136428Bromodichloromethane0.05830.05680.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317	1,1-Dichloropropene	0.0580	0.0577	0.0500 0.0500	116	115	73-127	1	15	
Trichloroethene0.05540.05390.05000.050011110880-1303151,2-Dichloropropane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.0500928972-136428Bromodichloromethane0.05830.05680.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317	Benzene	0.0599	0.0598	0.0500 0.0500	120	120	75-126	0	15	
1,2-Dichloropropane0.06000.06160.05000.050012012378-131316Dibromomethane0.04590.04430.05000.0500928972-136428Bromodichloromethane0.05830.05680.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317	1,2-Dichloroethane	0.0499	0.0491	0.0500 0.0500	100	98	70-133	2	15	
Dibromomethane0.04590.04430.05000.0500928972-136428Bromodichloromethane0.05830.05680.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317	Trichloroethene	0.0554	0.0539	0.0500 0.0500	111	108	80-130	3	15	
Dibromomethane0.04590.04430.05000.0500928972-136428Bromodichloromethane0.05830.05680.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317	1,2-Dichloropropane	0.0600	0.0616	0.0500 0.0500	120	123	78-131	3	16	
Bromodichloromethane0.05830.05680.05000.050011711480-129315(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317			0.0443	0.0500 0.0500			72-136	4	28	
(cis) 1,3-Dichloropropene0.06280.06040.05000.050012612180-132417Methyl Isobutyl Ketone0.04170.04000.05000.0500838062-146422Toluene0.05800.06000.05000.050011612078-124317	Bromodichloromethane		0.0568	0.0500 0.0500	117	114	80-129	3	15	
Methyl Isobutyl Ketone 0.0417 0.0400 0.0500 0.0500 83 80 62-146 4 22 Toluene 0.0580 0.0600 0.0500 0.0500 116 120 78-124 3 17	(cis) 1,3-Dichloropropene	0.0628	0.0604	0.0500 0.0500	126	121	80-132	4	17	
Toluene 0.0580 0.0600 0.0500 0.0500 116 120 78-124 3 17		0.0417						4		
	(trans) 1,3-Dichloropropene	0.0526	0.0542	0.0500 0.0500	105	108	80-130	3	15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

				Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS									
Laboratory ID:	SB06	17S1							
	SB	SBD	SB SBD	SB	SBD				
1,1,2-Trichloroethane	0.0387	0.0451	0.0500 0.0500	77	90	80-123	15	15	I,L
Tetrachloroethene	0.0529	0.0590	0.0500 0.0500	106	118	80-130	11	15	
1,3-Dichloropropane	0.0453	0.0501	0.0500 0.0500	91	100	80-122	10	15	
2-Hexanone	0.0385	0.0414	0.0500 0.0500	77	83	61-143	7	30	
Dibromochloromethane	0.0413	0.0433	0.0500 0.0500	83	87	80-129	5	15	
1,2-Dibromoethane	0.0398	0.0429	0.0500 0.0500	80	86	80-125	7	15	
Chlorobenzene	0.0484	0.0483	0.0500 0.0500	97	97	80-119	0	15	
1,1,1,2-Tetrachloroethane	0.0496	0.0497	0.0500 0.0500	99	99	80-124	0	15	
Ethylbenzene	0.0574	0.0581	0.0500 0.0500	115	116	80-120	1	15	
m,p-Xylene	0.112	0.116	0.100 0.100	112	116	80-121	4	15	
o-Xylene	0.0563	0.0569	0.0500 0.0500	113	114	80-120	1	15	
Styrene	0.0528	0.0531	0.0500 0.0500	106	106	80-130	1	15	
Bromoform	0.0467	0.0419	0.0500 0.0500	93	84	79-132	11	15	
lsopropylbenzene	0.0556	0.0558	0.0500 0.0500	111	112	80-126	0	15	
Bromobenzene	0.0486	0.0507	0.0500 0.0500	97	101	80-124	4	15	
1,1,2,2-Tetrachloroethane	0.0440	0.0444	0.0500 0.0500	88	89	75-128	1	19	
1,2,3-Trichloropropane	0.0463	0.0462	0.0500 0.0500	93	92	74-128	0	19	
n-Propylbenzene	0.0584	0.0617	0.0500 0.0500	117	123	80-128	5	16	
2-Chlorotoluene	0.0510	0.0530	0.0500 0.0500	102	106	80-126	4	15	
4-Chlorotoluene	0.0502	0.0523	0.0500 0.0500	100	105	80-129	4	15	
1,3,5-Trimethylbenzene	0.0557	0.0590	0.0500 0.0500	111	118	80-129	6	15	
tert-Butylbenzene	0.0527	0.0543	0.0500 0.0500	105	109	80-129	3	15	
1,2,4-Trimethylbenzene	0.0570	0.0549	0.0500 0.0500	114	110	80-127	4	15	
sec-Butylbenzene	0.0582	0.0535	0.0500 0.0500	116	107	77-134	8	16	
1,3-Dichlorobenzene	0.0524	0.0474	0.0500 0.0500	105	95	80-125	10	15	
p-lsopropyltoluene	0.0558	0.0521	0.0500 0.0500	112	104	80-133	7	15	
1,4-Dichlorobenzene	0.0518	0.0492	0.0500 0.0500	104	98	78-127	5	15	
1,2-Dichlorobenzene	0.0505	0.0429	0.0500 0.0500	101	86	79-127	16	15	L
n-Butylbenzene	0.0629	0.0526	0.0500 0.0500	126	105	80-136	18	17	L
1,2-Dibromo-3-chloropropane	0.0396	0.0339	0.0500 0.0500	79	68	68-143	16	26	
1,2,4-Trichlorobenzene	0.0542	0.0524	0.0500 0.0500	108	105	77-142	3	19	
Hexachlorobutadiene	0.0604	0.0620	0.0500 0.0500	121	124	73-135	3	19	
Naphthalene	0.0398	0.0373	0.0500 0.0500	80	75	72-142	6	21	
1,2,3-Trichlorobenzene	0.0496	0.0481	0.0500 0.0500	99	96	77-139	3	19	
Surrogate:									
Dibromofluoromethane				99	95	69-124			
Toluene-d8				103	108	80-118			
4-Bromofluorobenzene				97	115	75-123			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs EPA 8270E/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-4					
Laboratory ID:	06-163-01					
Naphthalene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
2-Methylnaphthalene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
1-Methylnaphthalene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Acenaphthylene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Acenaphthene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Fluorene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Phenanthrene	0.0085	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Anthracene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Fluoranthene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Pyrene	0.0076	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Benzo[a]anthracene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Chrysene	0.0073	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Benzo[b]fluoranthene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Benzo(j,k)fluoranthene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Benzo[a]pyrene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Indeno(1,2,3-c,d)pyrene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Dibenz[a,h]anthracene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Benzo[g,h,i]perylene	ND	0.0070	EPA 8270E/SIM	6-17-24	6-18-24	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	47-112				
Pyrene-d10	91	48-129				
Terphenyl-d14	104	51-114				

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0617S1					
Naphthalene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
2-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
1-Methylnaphthalene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Acenaphthylene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Acenaphthene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Fluorene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Phenanthrene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Anthracene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Fluoranthene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Pyrene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Chrysene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270E/SIM	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	47-112				
Pyrene-d10	94	48-129				
Terphenyl-d14	95	51-114				

14

PAHs EPA 8270E/SIM QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	617S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0731	0.0746	0.0833	0.0833	88	90	64-115	2	15	
Acenaphthylene	0.0794	0.0807	0.0833	0.0833	95	97	68-118	2	15	
Acenaphthene	0.0758	0.0778	0.0833	0.0833	91	93	67-116	3	15	
Fluorene	0.0776	0.0793	0.0833	0.0833	93	95	69-120	2	15	
Phenanthrene	0.0778	0.0811	0.0833	0.0833	93	97	67-120	4	15	
Anthracene	0.0786	0.0823	0.0833	0.0833	94	99	71-118	5	15	
Fluoranthene	0.0816	0.0857	0.0833	0.0833	98	103	73-118	5	15	
Pyrene	0.0790	0.0820	0.0833	0.0833	95	98	71-118	4	15	
Benzo[a]anthracene	0.0825	0.0870	0.0833	0.0833	99	104	60-128	5	15	
Chrysene	0.0780	0.0828	0.0833	0.0833	94	99	70-121	6	15	
Benzo[b]fluoranthene	0.0758	0.0791	0.0833	0.0833	91	95	68-123	4	15	
Benzo(j,k)fluoranthene	0.0830	0.0877	0.0833	0.0833	100	105	73-123	6	17	
Benzo[a]pyrene	0.0790	0.0826	0.0833	0.0833	95	99	72-120	4	15	
Indeno(1,2,3-c,d)pyrene	0.0764	0.0798	0.0833	0.0833	92	96	64-122	4	15	
Dibenz[a,h]anthracene	0.0783	0.0821	0.0833	0.0833	94	99	72-120	5	15	
Benzo[g,h,i]perylene	0.0777	0.0812	0.0833	0.0833	93	97	71-117	4	15	
Surrogate:										
2-Fluorobiphenyl					85	86	47-112			
Pyrene-d10					92	97	48-129			
Terphenyl-d14					92	97	51-114			

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-4					
Laboratory ID:	06-163-01					
Aroclor 1016	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1221	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1232	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1242	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1248	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1254	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1260	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1262	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Aroclor 1268	ND	0.052	EPA 8082A	6-17-24	6-18-24	
Surrogate:	Percent Recovery	Control Limits				
DCB	89	40-134				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

onita. mg/rtg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0617S1					
Aroclor 1016	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1221	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1232	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1242	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1248	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1254	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1260	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1262	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Aroclor 1268	ND	0.050	EPA 8082A	6-17-24	6-17-24	
Surrogate:	Percent Recovery	Control Limits				
DCB	102	40-134				

					Source	Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB06	617S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.394	0.452	0.500	0.500	N/A	79	90	60-115	14	23	
Surrogate:											
DCB						102	107	40-134			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSO DU-4					
Laboratory ID:	06-163-01					
Arsenic	ND	10	EPA 6010D	6-18-24	6-18-24	
Barium	120	2.6	EPA 6010D	6-18-24	6-18-24	
Cadmium	ND	0.52	EPA 6010D	6-18-24	6-18-24	
Chromium	6.6	0.52	EPA 6010D	6-18-24	6-18-24	
Lead	ND	5.2	EPA 6010D	6-18-24	6-18-24	
Mercury	ND	0.26	EPA 7471B	6-17-24	6-17-24	
Selenium	ND	10	EPA 6010D	6-18-24	6-18-24	
Silver	ND	1.0	EPA 6010D	6-18-24	6-18-24	

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

onito: ing/rtg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0618SM2					
Arsenic	ND	10	EPA 6010D	6-17-24	6-18-24	
Barium	ND	2.5	EPA 6010D	6-17-24	6-17-24	
Cadmium	ND	0.50	EPA 6010D	6-17-24	6-18-24	
Chromium	ND	0.50	EPA 6010D	6-17-24	6-18-24	
Lead	ND	5.0	EPA 6010D	6-17-24	6-18-24	
Selenium	ND	10	EPA 6010D	6-17-24	6-18-24	
Silver	ND	1.0	EPA 6010D	6-17-24	6-18-24	
Laboratory ID:	MB0617S1					
Mercury	ND	0.25	EPA 7471B	6-17-24	6-17-24	

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-21	13-01									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	١A	NA	NA	20	
Barium	87.6	87.9	NA	NA		1	ΝA	NA	0	20	
Cadmium	ND	ND	NA	NA		1	ΝA	NA	NA	20	
Chromium	19.1	19.2	NA	NA		1	١A	NA	1	20	
Lead	8.40	7.96	NA	NA		1	ΝA	NA	5	20	
Selenium	ND	ND	NA	NA		1	ΝA	NA	NA	20	
Silver	ND	ND	NA	NA		1	١A	NA	NA	20	
Laboratory ID:	06-18	33-02									
Mercury	ND	ND	NA	NA		1	١A	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	06-2	13-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	113	113	100	100	ND	113	113	75-125	0	20	
Barium	189	183	100	100	87.6	101	96	75-125	3	20	
Cadmium	51.8	49.9	50.0	50.0	ND	104	100	75-125	4	20	
Chromium	126	123	100	100	19.1	106	104	75-125	2	20	
Lead	273	261	250	250	8.40	106	101	75-125	5	20	
Selenium	103	97.7	100	100	ND	103	98	75-125	5	20	
Silver	24.0	22.9	25.0	25.0	ND	96	92	75-125	5	20	
Laboratory ID:	06-18	33-02									
Mercury	0.508	0.511	0.500	0.500	0.00660	100	101	80-120	1	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

-

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
CSO DU-4	06-163-01	7	6-14-24

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE MULTI-INCREMENT SAMPLING

			Date
Client ID	Lab ID	% Moisture	Analyzed
CSO DU-4	06-163-01	5	6-17-24
		-	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Fleceived	Relinquished	Signature	Project Manager: KAMA KOBAYASHI Sampled by: CALVIN ARCA I CSO DU-H	Company: LEHUA ENVIRONMENTAL INC. Project Number: 2024-243-3 Project Name: CSO DECOMMISSIONING - PARKING LOT/ DRIVEWAY ASPHALT PAVED AREA	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
R						LEHI	Company	Cate Sampled	Same Day	(in v	
Reviewed/Date						JA ENV	рапу	(other)	ay d (7 Days	(In working days) (Check One)	Ch
Date					DUC	LEHUA ENVIRONMENTAL INC.			X 1 Day 3 Days	aquest lays)	Chain o
						AL INC	аL.	I I Vumber of Container	8		- O
					6	÷,	12	NWTPH-HCID			Custody
				•	0/1	6-12	Date	NWTPH-Gx/BTEX	ter aven man den men men heget, er i men at aven aven	Laboratory Number:	S
					22	22			PA 8015	ato	00
					~	4		NWTPH-DX XXXXXXX EPA 8015	XXXXXXXXXX	IV I	<
					10	12:00	Time	Volatiles 8260C	2200	- Un	
					doub	8		Halogenated Volatiles		nbe	
						5	No. No.	EDB EPA 8011 (Water:		PP 25	
Chro	Data					_	Com	Semivolatiles 8270D/S (with low-level PAHs)		0	
mato	Paci			~	- (C)	ment	PAHs 8270D/SIM (low-	level)	O	
gram	Package:			,	4	5	s/Spe	PCBs 8082A	-		
s with				-	2	~	cial l	Organochlorine Pestic		0	
) fina	Standard				000	8	nstru	Organophosphorus Pe		C	
Chromatograms with final report						nethanel	Compents/Special Instructions	Chlorinated Acid Herb	cides 8151A		
Ht	Level			, (oc bee	De l		Total RCRA Metals	Manual of Typestroic data in the encourage of the second state		
Elec	Ξ			C	9 4	5		Total MTCA Metals			Page
tronic						inia/s	6	TCLP Metals	0044	_	je
Data	Level				l	0		HEM (oil and grease) 1		_	
Electronic Data Deliverables (EDDs)	N							→ Multi-incremental s Volatile and Non-Ve			of I
rables									1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		-
s (EDL										4	
)s) []								96 Moisture		4	

Sample/Cooler Receipt and Acceptance Checklist

Client: <u>UE7</u> Client Project Name/Number: <u>2024-243-3</u> OnSite Project Number: <u>06-163</u>		Initiated by Date Initiat	(1)/12/14
1.0 Cooler Verification			
1.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A 1 2 3 4
1.2 Were the custody seals intact?	Yes	No	1234
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	MA 1234
1.4 Were the samples delivered on ice or blue ice?	Yes	No	N/A 1 2 3 4
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	N/A Temperature:
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	N/A	
1.7 How were the samples delivered?	Client	Courier	UPS/FedEx) OSE Pickup Other
2.0 Chain of Custody Verification 2.1 Was a Chain of Custody submitted with the samples?	(Ne	
	Yes	No	1 2 3 4
2.2 Was the COC legible and written in permanent ink?	Yes	No	1 2 3 4
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No	1 2 3 4
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Yes	No	1 2 3 4
2.5 Were all of the samples listed on the COC submitted?	(es)	No	1 2 3 4
2.6 Were any of the samples submitted omitted from the COC?	Yes	No	1 2 3 4
3.0 Sample Verification	-		
3.1 Were any sample containers broken or compromised?	Yes	No	1 2 3 4
3.2 Were any sample labels missing or illegible?	Yes	No	1 2 3 4
3.3 Have the correct containers been used for each analysis requested?	Yes	No	1 2 3 4
3.4 Have the samples been correctly preserved?	(es	No	N/A 1 2 3 4
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Yes	No	N/A 1 2 3 4
3.6 Is there sufficient sample submitted to perform requested analyses?	Yes	No	1 2 3 4
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	No	1 2 3 4
3.8 Was method 5035A used?	Yes	No	N/A 1 2 3 4
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#	2	N/A 1 2 3 4
Explain any discrepancies:			

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

.

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls